Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2001

AUTHORS

Eric Pesheck , Nicolas Boivin , Christophe Pierre , Steven W. Shaw

ABSTRACT

In this paper, an invariant manifold approach is introduced for the generation of reduced-order models for nonlinear vibrations of multi-degrees-of-freedom systems. In particular, the invariant manifold approach for defining and constructing nonlinear normal modes of vibration is extended to the case of multi-mode manifolds. The dynamic models obtained from this technique capture the essential coupling between modes of interest, while avoiding coupling from other modes. Such an approach is useful for modeling complex system responses, and is essential when internal resonances exist between modes. The basic theory and a general, constructive methodology for the method are presented. It is then applied to two example problems, one analytical and the other finite-element based. Numerical simulation results are obtained for the full model and various types of reduced-order models, including the usual projection onto a set of linear modes, and the invariant manifold approach developed herein. The results show that the method is capable of accurately representing the nonlinear system dynamics with relatively few degrees of freedom over a range of vibration amplitudes. More... »

PAGES

183-205

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-2452-4_10

DOI

http://dx.doi.org/10.1007/978-94-017-2452-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013103257


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesheck", 
        "givenName": "Eric", 
        "id": "sg:person.016050611503.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016050611503.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boivin", 
        "givenName": "Nicolas", 
        "id": "sg:person.010143120703.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143120703.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pierre", 
        "givenName": "Christophe", 
        "id": "sg:person.010172370375.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172370375.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Michigan State University, 48824-1226, East Lansing, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Mechanical Engineering, Michigan State University, 48824-1226, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Steven W.", 
        "id": "sg:person.016303032223.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "In this paper, an invariant manifold approach is introduced for the generation of reduced-order models for nonlinear vibrations of multi-degrees-of-freedom systems. In particular, the invariant manifold approach for defining and constructing nonlinear normal modes of vibration is extended to the case of multi-mode manifolds. The dynamic models obtained from this technique capture the essential coupling between modes of interest, while avoiding coupling from other modes. Such an approach is useful for modeling complex system responses, and is essential when internal resonances exist between modes. The basic theory and a general, constructive methodology for the method are presented. It is then applied to two example problems, one analytical and the other finite-element based. Numerical simulation results are obtained for the full model and various types of reduced-order models, including the usual projection onto a set of linear modes, and the invariant manifold approach developed herein. The results show that the method is capable of accurately representing the nonlinear system dynamics with relatively few degrees of freedom over a range of vibration amplitudes.", 
    "editor": [
      {
        "familyName": "Vakakis", 
        "givenName": "Alexander F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-2452-4_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-90-481-5715-0", 
        "978-94-017-2452-4"
      ], 
      "name": "Normal Modes and Localization in Nonlinear Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "invariant manifold approach", 
      "reduced-order model", 
      "manifold approach", 
      "Multi-Mode Invariant Manifolds", 
      "nonlinear system dynamics", 
      "nonlinear modal analysis", 
      "nonlinear normal modes", 
      "complex system responses", 
      "invariant manifolds", 
      "constructive methodology", 
      "numerical simulation results", 
      "system dynamics", 
      "modes of interest", 
      "example problems", 
      "nonlinear vibration", 
      "internal resonance", 
      "degrees of freedom", 
      "freedom system", 
      "full model", 
      "manifold", 
      "basic theory", 
      "system response", 
      "simulation results", 
      "dynamic model", 
      "structural systems", 
      "linear mode", 
      "modal analysis", 
      "essential coupling", 
      "model", 
      "vibration amplitude", 
      "approach", 
      "normal modes", 
      "problem", 
      "theory", 
      "vibration", 
      "dynamics", 
      "system", 
      "usual projections", 
      "set", 
      "methodology", 
      "freedom", 
      "coupling", 
      "projections", 
      "results", 
      "technique", 
      "mode", 
      "cases", 
      "interest", 
      "amplitude", 
      "analysis", 
      "degree", 
      "generation", 
      "types", 
      "method", 
      "resonance", 
      "range", 
      "response", 
      "paper", 
      "multi-mode manifolds"
    ], 
    "name": "Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds", 
    "pagination": "183-205", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013103257"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-2452-4_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-2452-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1013103257"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_174.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-017-2452-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2452-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2452-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2452-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2452-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      85 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-2452-4_10 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6adebe5657384007a583a35215baf8bc
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description In this paper, an invariant manifold approach is introduced for the generation of reduced-order models for nonlinear vibrations of multi-degrees-of-freedom systems. In particular, the invariant manifold approach for defining and constructing nonlinear normal modes of vibration is extended to the case of multi-mode manifolds. The dynamic models obtained from this technique capture the essential coupling between modes of interest, while avoiding coupling from other modes. Such an approach is useful for modeling complex system responses, and is essential when internal resonances exist between modes. The basic theory and a general, constructive methodology for the method are presented. It is then applied to two example problems, one analytical and the other finite-element based. Numerical simulation results are obtained for the full model and various types of reduced-order models, including the usual projection onto a set of linear modes, and the invariant manifold approach developed herein. The results show that the method is capable of accurately representing the nonlinear system dynamics with relatively few degrees of freedom over a range of vibration amplitudes.
7 schema:editor N69c98d79c71e446a97c69e2f701d5b4a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N882293ef69ac474681a75b4bffd78fa0
12 schema:keywords Multi-Mode Invariant Manifolds
13 amplitude
14 analysis
15 approach
16 basic theory
17 cases
18 complex system responses
19 constructive methodology
20 coupling
21 degree
22 degrees of freedom
23 dynamic model
24 dynamics
25 essential coupling
26 example problems
27 freedom
28 freedom system
29 full model
30 generation
31 interest
32 internal resonance
33 invariant manifold approach
34 invariant manifolds
35 linear mode
36 manifold
37 manifold approach
38 method
39 methodology
40 modal analysis
41 mode
42 model
43 modes of interest
44 multi-mode manifolds
45 nonlinear modal analysis
46 nonlinear normal modes
47 nonlinear system dynamics
48 nonlinear vibration
49 normal modes
50 numerical simulation results
51 paper
52 problem
53 projections
54 range
55 reduced-order model
56 resonance
57 response
58 results
59 set
60 simulation results
61 structural systems
62 system
63 system dynamics
64 system response
65 technique
66 theory
67 types
68 usual projections
69 vibration
70 vibration amplitude
71 schema:name Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds
72 schema:pagination 183-205
73 schema:productId N19b850be60ab45a7bf814cb41497744f
74 N1cc85a7593d74509ad7faadd82712809
75 schema:publisher Ncd0a3893334d43f8a1cd4cb0c4a17b5f
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013103257
77 https://doi.org/10.1007/978-94-017-2452-4_10
78 schema:sdDatePublished 2021-11-01T18:48
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N3157f0623fd044d094648508a4ce7f0b
81 schema:url https://doi.org/10.1007/978-94-017-2452-4_10
82 sgo:license sg:explorer/license/
83 sgo:sdDataset chapters
84 rdf:type schema:Chapter
85 N19b850be60ab45a7bf814cb41497744f schema:name doi
86 schema:value 10.1007/978-94-017-2452-4_10
87 rdf:type schema:PropertyValue
88 N1cc85a7593d74509ad7faadd82712809 schema:name dimensions_id
89 schema:value pub.1013103257
90 rdf:type schema:PropertyValue
91 N3157f0623fd044d094648508a4ce7f0b schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N602703422d444a50a7673ecb2f5153b9 schema:familyName Vakakis
94 schema:givenName Alexander F.
95 rdf:type schema:Person
96 N63f2a3ecd5bd4c78932ec7fb9a75c9ce rdf:first sg:person.016303032223.67
97 rdf:rest rdf:nil
98 N69c98d79c71e446a97c69e2f701d5b4a rdf:first N602703422d444a50a7673ecb2f5153b9
99 rdf:rest rdf:nil
100 N6adebe5657384007a583a35215baf8bc rdf:first sg:person.016050611503.69
101 rdf:rest N70b58eeddd6440498b979a49b9898d91
102 N6fd5d5b608424082a57c2593ad0a593a rdf:first sg:person.010172370375.92
103 rdf:rest N63f2a3ecd5bd4c78932ec7fb9a75c9ce
104 N70b58eeddd6440498b979a49b9898d91 rdf:first sg:person.010143120703.47
105 rdf:rest N6fd5d5b608424082a57c2593ad0a593a
106 N882293ef69ac474681a75b4bffd78fa0 schema:isbn 978-90-481-5715-0
107 978-94-017-2452-4
108 schema:name Normal Modes and Localization in Nonlinear Systems
109 rdf:type schema:Book
110 Ncd0a3893334d43f8a1cd4cb0c4a17b5f schema:name Springer Nature
111 rdf:type schema:Organisation
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
116 schema:name Pure Mathematics
117 rdf:type schema:DefinedTerm
118 sg:person.010143120703.47 schema:affiliation grid-institutes:grid.214458.e
119 schema:familyName Boivin
120 schema:givenName Nicolas
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143120703.47
122 rdf:type schema:Person
123 sg:person.010172370375.92 schema:affiliation grid-institutes:grid.214458.e
124 schema:familyName Pierre
125 schema:givenName Christophe
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172370375.92
127 rdf:type schema:Person
128 sg:person.016050611503.69 schema:affiliation grid-institutes:grid.214458.e
129 schema:familyName Pesheck
130 schema:givenName Eric
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016050611503.69
132 rdf:type schema:Person
133 sg:person.016303032223.67 schema:affiliation grid-institutes:grid.17088.36
134 schema:familyName Shaw
135 schema:givenName Steven W.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67
137 rdf:type schema:Person
138 grid-institutes:grid.17088.36 schema:alternateName Department of Mechanical Engineering, Michigan State University, 48824-1226, East Lansing, MI, USA
139 schema:name Department of Mechanical Engineering, Michigan State University, 48824-1226, East Lansing, MI, USA
140 rdf:type schema:Organization
141 grid-institutes:grid.214458.e schema:alternateName Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, USA
142 schema:name Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, USA
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...