Invariant Tori in the Secular Motions of the Three-Body Planetary Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Ugo Locatelli , Antonio Giorgilli

ABSTRACT

We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun—Jupiter—Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors. More... »

PAGES

47-74

Book

TITLE

New Developments in the Dynamics of Planetary Systems

ISBN

978-90-481-5702-0
978-94-017-2414-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-2414-2_3

DOI

http://dx.doi.org/10.1007/978-94-017-2414-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010592131


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica, Via Saldini 50, 20133\u00a0Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Locatelli", 
        "givenName": "Ugo", 
        "id": "sg:person.07637253565.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07637253565.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica e Applicazioni, Via degli Arcimboldi 8, 20126\u00a0Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgilli", 
        "givenName": "Antonio", 
        "id": "sg:person.010532704656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-011-4673-9_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001742488", 
          "https://doi.org/10.1007/978-94-011-4673-9_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-4673-9_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001742488", 
          "https://doi.org/10.1007/978-94-011-4673-9_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(89)90161-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012444730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00692088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016401816", 
          "https://doi.org/10.1007/bf00692088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00692088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016401816", 
          "https://doi.org/10.1007/bf00692088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00692089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016738552", 
          "https://doi.org/10.1007/bf00692089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00692089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016738552", 
          "https://doi.org/10.1007/bf00692089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008397403548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019821285", 
          "https://doi.org/10.1023/a:1008397403548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200050115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021268156", 
          "https://doi.org/10.1007/s002200050115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0032-0633(98)00064-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033037831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00001475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042122109", 
          "https://doi.org/10.1007/pl00001475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052187208", 
          "https://doi.org/10.1007/bf01399536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0021737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052916765", 
          "https://doi.org/10.1007/bfb0021737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1963v018n05abeh004130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058193720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1963v018n06abeh001143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058193727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/13/2/304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059108913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/5/4/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.257.5066.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062544263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144595284180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877881"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun\u2014Jupiter\u2014Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.", 
    "editor": [
      {
        "familyName": "Dvorak", 
        "givenName": "Rudolf", 
        "type": "Person"
      }, 
      {
        "familyName": "Henrard", 
        "givenName": "Jacques", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-2414-2_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-5702-0", 
        "978-94-017-2414-2"
      ], 
      "name": "New Developments in the Dynamics of Planetary Systems", 
      "type": "Book"
    }, 
    "name": "Invariant Tori in the Secular Motions of the Three-Body Planetary Systems", 
    "pagination": "47-74", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-2414-2_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "32761cce05660bd2a3608fc8415674ca92a4615d5dfe6df3a6456f54ff996f0d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010592131"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-2414-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1010592131"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000249.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-94-017-2414-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2414-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2414-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2414-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2414-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-2414-2_3 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Nf8cc9424fd4d464cb74b2905fcf87489
4 schema:citation sg:pub.10.1007/978-94-011-4673-9_13
5 sg:pub.10.1007/bf00692088
6 sg:pub.10.1007/bf00692089
7 sg:pub.10.1007/bf01399536
8 sg:pub.10.1007/bfb0021737
9 sg:pub.10.1007/pl00001475
10 sg:pub.10.1007/s002200050115
11 sg:pub.10.1023/a:1008397403548
12 https://doi.org/10.1016/0022-0396(89)90161-7
13 https://doi.org/10.1016/s0032-0633(98)00064-6
14 https://doi.org/10.1070/rm1963v018n05abeh004130
15 https://doi.org/10.1070/rm1963v018n06abeh001143
16 https://doi.org/10.1088/0951-7715/13/2/304
17 https://doi.org/10.1088/0951-7715/5/4/002
18 https://doi.org/10.1126/science.257.5066.56
19 https://doi.org/10.1137/s0036144595284180
20 schema:datePublished 2001
21 schema:datePublishedReg 2001-01-01
22 schema:description We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun—Jupiter—Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.
23 schema:editor N5149b76726db4d7fa6f5a8cabafca2c8
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N373bd66f2c78465db9608171619c89ef
28 schema:name Invariant Tori in the Secular Motions of the Three-Body Planetary Systems
29 schema:pagination 47-74
30 schema:productId N0f6acc9dbff1453c8e1bbe9a13af3a57
31 Nc972b04efde147579cac8d2bb8349ddb
32 Nfa30481127c948a1aa8d55872c8f3d7a
33 schema:publisher Nb657d6f68b674c33bd1d8d5919ecc2b4
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010592131
35 https://doi.org/10.1007/978-94-017-2414-2_3
36 schema:sdDatePublished 2019-04-15T16:15
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N1fa8542784bb4b339f9d5bc44507d243
39 schema:url http://link.springer.com/10.1007/978-94-017-2414-2_3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N0f6acc9dbff1453c8e1bbe9a13af3a57 schema:name dimensions_id
44 schema:value pub.1010592131
45 rdf:type schema:PropertyValue
46 N1fa8542784bb4b339f9d5bc44507d243 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N373bd66f2c78465db9608171619c89ef schema:isbn 978-90-481-5702-0
49 978-94-017-2414-2
50 schema:name New Developments in the Dynamics of Planetary Systems
51 rdf:type schema:Book
52 N428ab0c334fb49af88cfba61f9b070ed schema:familyName Henrard
53 schema:givenName Jacques
54 rdf:type schema:Person
55 N5149b76726db4d7fa6f5a8cabafca2c8 rdf:first Nf9aaa45784014acfafc3d71a63959193
56 rdf:rest Nbdbb7cad13b64f4dad4afa5ec6b79d81
57 N5d0f3b62412a4ff79d692e77ed98906b schema:name Dipartimento di Matematica e Applicazioni, Via degli Arcimboldi 8, 20126 Milano, Italy
58 rdf:type schema:Organization
59 N75cf1d9605cc47c088f262482de1b6b9 rdf:first sg:person.010532704656.30
60 rdf:rest rdf:nil
61 N9defe22e13c041ebb9b191415c938640 schema:name Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy
62 rdf:type schema:Organization
63 Nb657d6f68b674c33bd1d8d5919ecc2b4 schema:location Dordrecht
64 schema:name Springer Netherlands
65 rdf:type schema:Organisation
66 Nbdbb7cad13b64f4dad4afa5ec6b79d81 rdf:first N428ab0c334fb49af88cfba61f9b070ed
67 rdf:rest rdf:nil
68 Nc972b04efde147579cac8d2bb8349ddb schema:name doi
69 schema:value 10.1007/978-94-017-2414-2_3
70 rdf:type schema:PropertyValue
71 Nf8cc9424fd4d464cb74b2905fcf87489 rdf:first sg:person.07637253565.17
72 rdf:rest N75cf1d9605cc47c088f262482de1b6b9
73 Nf9aaa45784014acfafc3d71a63959193 schema:familyName Dvorak
74 schema:givenName Rudolf
75 rdf:type schema:Person
76 Nfa30481127c948a1aa8d55872c8f3d7a schema:name readcube_id
77 schema:value 32761cce05660bd2a3608fc8415674ca92a4615d5dfe6df3a6456f54ff996f0d
78 rdf:type schema:PropertyValue
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
83 schema:name Computation Theory and Mathematics
84 rdf:type schema:DefinedTerm
85 sg:person.010532704656.30 schema:affiliation N5d0f3b62412a4ff79d692e77ed98906b
86 schema:familyName Giorgilli
87 schema:givenName Antonio
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
89 rdf:type schema:Person
90 sg:person.07637253565.17 schema:affiliation N9defe22e13c041ebb9b191415c938640
91 schema:familyName Locatelli
92 schema:givenName Ugo
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07637253565.17
94 rdf:type schema:Person
95 sg:pub.10.1007/978-94-011-4673-9_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001742488
96 https://doi.org/10.1007/978-94-011-4673-9_13
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf00692088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016401816
99 https://doi.org/10.1007/bf00692088
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf00692089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016738552
102 https://doi.org/10.1007/bf00692089
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf01399536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052187208
105 https://doi.org/10.1007/bf01399536
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bfb0021737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052916765
108 https://doi.org/10.1007/bfb0021737
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/pl00001475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042122109
111 https://doi.org/10.1007/pl00001475
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s002200050115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021268156
114 https://doi.org/10.1007/s002200050115
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/a:1008397403548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019821285
117 https://doi.org/10.1023/a:1008397403548
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0022-0396(89)90161-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012444730
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0032-0633(98)00064-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033037831
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1070/rm1963v018n05abeh004130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193720
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1070/rm1963v018n06abeh001143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193727
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/0951-7715/13/2/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059108913
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/0951-7715/5/4/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110763
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1126/science.257.5066.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062544263
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1137/s0036144595284180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877881
134 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...