On the Relationship between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Marc Fouchard , Elena Lega , Christiane Froeschlé , Claude Froeschlé

ABSTRACT

It is already known (Froeschlé et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschlé, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the Hénon and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings. More... »

PAGES

205-222

Book

TITLE

Modern Celestial Mechanics: From Theory to Applications

ISBN

978-90-481-6078-5
978-94-017-2304-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13

DOI

http://dx.doi.org/10.1007/978-94-017-2304-6_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013919806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fouchard", 
        "givenName": "Marc", 
        "id": "sg:person.015127714775.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127714775.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lega", 
        "givenName": "Elena", 
        "id": "sg:person.01277026214.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277026214.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Froeschl\u00e9", 
        "givenName": "Christiane", 
        "id": "sg:person.013202724547.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Froeschl\u00e9", 
        "givenName": "Claude", 
        "id": "sg:person.014053526143.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053526143.20"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "It is already known (Froeschl\u00e9 et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschl\u00e9, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the H\u00e9non and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings.", 
    "editor": [
      {
        "familyName": "Celletti", 
        "givenName": "Alessandra", 
        "type": "Person"
      }, 
      {
        "familyName": "Ferraz-Mello", 
        "givenName": "Sylvio", 
        "type": "Person"
      }, 
      {
        "familyName": "Henrard", 
        "givenName": "Jacques", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-2304-6_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-6078-5", 
        "978-94-017-2304-6"
      ], 
      "name": "Modern Celestial Mechanics: From Theory to Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "weak chaotic motion", 
      "Fast Lyapunov Indicator", 
      "Lyapunov Indicator", 
      "periodic orbits", 
      "chaotic motion", 
      "continuous dynamical systems", 
      "dynamical systems", 
      "model problem", 
      "regular motion", 
      "standard map", 
      "resonant orbits", 
      "orbit", 
      "motion", 
      "present paper", 
      "computation", 
      "problem", 
      "order", 
      "FLI values", 
      "flow", 
      "model", 
      "results", 
      "quantity", 
      "continuous flow", 
      "short time", 
      "new values", 
      "system", 
      "values", 
      "maps", 
      "mapping", 
      "cases", 
      "time", 
      "indicators", 
      "relationship", 
      "FLI", 
      "paper"
    ], 
    "name": "On the Relationship between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows", 
    "pagination": "205-222", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013919806"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-2304-6_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-2304-6_13", 
      "https://app.dimensions.ai/details/publication/pub.1013919806"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_7.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-017-2304-6_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-2304-6_13 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N74d678f7b1474f6e96dcf4f505fb3aa4
4 schema:datePublished 2002
5 schema:datePublishedReg 2002-01-01
6 schema:description It is already known (Froeschlé et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschlé, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the Hénon and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings.
7 schema:editor N11b50d25d41a4ac4ad4c9fde520bb048
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc035adae56ae48c3be88b22e7a4fea36
12 schema:keywords FLI
13 FLI values
14 Fast Lyapunov Indicator
15 Lyapunov Indicator
16 cases
17 chaotic motion
18 computation
19 continuous dynamical systems
20 continuous flow
21 dynamical systems
22 flow
23 indicators
24 mapping
25 maps
26 model
27 model problem
28 motion
29 new values
30 orbit
31 order
32 paper
33 periodic orbits
34 present paper
35 problem
36 quantity
37 regular motion
38 relationship
39 resonant orbits
40 results
41 short time
42 standard map
43 system
44 time
45 values
46 weak chaotic motion
47 schema:name On the Relationship between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows
48 schema:pagination 205-222
49 schema:productId N84f486d3229d4ad5a9c53ac0024450c8
50 Nb9c194d1e0514cd1ae6a38468bb0a9ce
51 schema:publisher Nc45bba0bdb7044f5895326aa8ba7a052
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013919806
53 https://doi.org/10.1007/978-94-017-2304-6_13
54 schema:sdDatePublished 2022-05-10T10:54
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N9dc5eefa8baa445c8d1d92e8a5ecec90
57 schema:url https://doi.org/10.1007/978-94-017-2304-6_13
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N11b50d25d41a4ac4ad4c9fde520bb048 rdf:first N2b5d26bd7d1f41f5aacfbbc606f59fb1
62 rdf:rest Nebbf4fbf406043198876abb926b4fb6a
63 N2b5d26bd7d1f41f5aacfbbc606f59fb1 schema:familyName Celletti
64 schema:givenName Alessandra
65 rdf:type schema:Person
66 N30f72be66de747779dc45af597aaa2d3 rdf:first sg:person.01277026214.42
67 rdf:rest Nc7ac0e1b685f415098d5e4414c65c1e2
68 N618d45966f3d4a1592517b59aca970e2 rdf:first sg:person.014053526143.20
69 rdf:rest rdf:nil
70 N74d678f7b1474f6e96dcf4f505fb3aa4 rdf:first sg:person.015127714775.16
71 rdf:rest N30f72be66de747779dc45af597aaa2d3
72 N84f486d3229d4ad5a9c53ac0024450c8 schema:name dimensions_id
73 schema:value pub.1013919806
74 rdf:type schema:PropertyValue
75 N9079178937404d788db3d9da1608de44 rdf:first Nac60bc7099354d76a19d212180e5dad4
76 rdf:rest rdf:nil
77 N9c59728827a8473cb5460477449f159c schema:familyName Ferraz-Mello
78 schema:givenName Sylvio
79 rdf:type schema:Person
80 N9dc5eefa8baa445c8d1d92e8a5ecec90 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nac60bc7099354d76a19d212180e5dad4 schema:familyName Henrard
83 schema:givenName Jacques
84 rdf:type schema:Person
85 Nb9c194d1e0514cd1ae6a38468bb0a9ce schema:name doi
86 schema:value 10.1007/978-94-017-2304-6_13
87 rdf:type schema:PropertyValue
88 Nc035adae56ae48c3be88b22e7a4fea36 schema:isbn 978-90-481-6078-5
89 978-94-017-2304-6
90 schema:name Modern Celestial Mechanics: From Theory to Applications
91 rdf:type schema:Book
92 Nc45bba0bdb7044f5895326aa8ba7a052 schema:name Springer Nature
93 rdf:type schema:Organisation
94 Nc7ac0e1b685f415098d5e4414c65c1e2 rdf:first sg:person.013202724547.45
95 rdf:rest N618d45966f3d4a1592517b59aca970e2
96 Nebbf4fbf406043198876abb926b4fb6a rdf:first N9c59728827a8473cb5460477449f159c
97 rdf:rest N9079178937404d788db3d9da1608de44
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
102 schema:name Pure Mathematics
103 rdf:type schema:DefinedTerm
104 sg:person.01277026214.42 schema:affiliation grid-institutes:None
105 schema:familyName Lega
106 schema:givenName Elena
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277026214.42
108 rdf:type schema:Person
109 sg:person.013202724547.45 schema:affiliation grid-institutes:None
110 schema:familyName Froeschlé
111 schema:givenName Christiane
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45
113 rdf:type schema:Person
114 sg:person.014053526143.20 schema:affiliation grid-institutes:None
115 schema:familyName Froeschlé
116 schema:givenName Claude
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053526143.20
118 rdf:type schema:Person
119 sg:person.015127714775.16 schema:affiliation grid-institutes:None
120 schema:familyName Fouchard
121 schema:givenName Marc
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127714775.16
123 rdf:type schema:Person
124 grid-institutes:None schema:alternateName Observatoire de Nice, Bv. de l’Observatoire, B.P. 4229, 06304, Nice cedex 4, France
125 schema:name Observatoire de Nice, Bv. de l’Observatoire, B.P. 4229, 06304, Nice cedex 4, France
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...