Ontology type: schema:Chapter
2002
AUTHORSMarc Fouchard , Elena Lega , Christiane Froeschlé , Claude Froeschlé
ABSTRACTIt is already known (Froeschlé et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschlé, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the Hénon and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings. More... »
PAGES205-222
Modern Celestial Mechanics: From Theory to Applications
ISBN
978-90-481-6078-5
978-94-017-2304-6
http://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13
DOIhttp://dx.doi.org/10.1007/978-94-017-2304-6_13
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1013919806
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
],
"type": "Organization"
},
"familyName": "Fouchard",
"givenName": "Marc",
"id": "sg:person.015127714775.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127714775.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
],
"type": "Organization"
},
"familyName": "Lega",
"givenName": "Elena",
"id": "sg:person.01277026214.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277026214.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
],
"type": "Organization"
},
"familyName": "Froeschl\u00e9",
"givenName": "Christiane",
"id": "sg:person.013202724547.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Observatoire de Nice, Bv. de l\u2019Observatoire, B.P. 4229, 06304, Nice cedex 4, France"
],
"type": "Organization"
},
"familyName": "Froeschl\u00e9",
"givenName": "Claude",
"id": "sg:person.014053526143.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053526143.20"
],
"type": "Person"
}
],
"datePublished": "2002",
"datePublishedReg": "2002-01-01",
"description": "It is already known (Froeschl\u00e9 et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschl\u00e9, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the H\u00e9non and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings.",
"editor": [
{
"familyName": "Celletti",
"givenName": "Alessandra",
"type": "Person"
},
{
"familyName": "Ferraz-Mello",
"givenName": "Sylvio",
"type": "Person"
},
{
"familyName": "Henrard",
"givenName": "Jacques",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-017-2304-6_13",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-90-481-6078-5",
"978-94-017-2304-6"
],
"name": "Modern Celestial Mechanics: From Theory to Applications",
"type": "Book"
},
"keywords": [
"weak chaotic motion",
"Fast Lyapunov Indicator",
"Lyapunov Indicator",
"periodic orbits",
"chaotic motion",
"continuous dynamical systems",
"dynamical systems",
"model problem",
"regular motion",
"standard map",
"resonant orbits",
"orbit",
"motion",
"present paper",
"computation",
"problem",
"order",
"FLI values",
"flow",
"model",
"results",
"quantity",
"continuous flow",
"short time",
"new values",
"system",
"values",
"maps",
"mapping",
"cases",
"time",
"indicators",
"relationship",
"FLI",
"paper"
],
"name": "On the Relationship between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows",
"pagination": "205-222",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1013919806"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-017-2304-6_13"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-017-2304-6_13",
"https://app.dimensions.ai/details/publication/pub.1013919806"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_7.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-94-017-2304-6_13"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2304-6_13'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
23 PREDICATES
61 URIs
54 LITERALS
7 BLANK NODES