Dual Measurements and Information in Quantum Optics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

A. Vourdas , C. Bendjaballah

ABSTRACT

Quantum systems defined in a finite dimensional Hilbert space HD spanned by complete, finite Fourier transform states |λ; n〉, (resp. |\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde \lambda$$\end{document}; n〉) with n ∈ [1, D], (mod. D), are examined. The main properties of dual observables are briefly reviewed. The information I(Ω, A) associated with a measurement A of a system described by a state Ω, is introduced and its properties are analyzed. The inequality\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\left( {\Omega ,A} \right) + I\left( {\Omega ,\tilde A} \right) \leqslant \log D $$\end{document} is demonstrated for dual measurements (A, Ã). The results are then applied to some operators of interest in quantum optics. For instance, it is shown that under some conditions, the number and “phase” observables for a harmonic oscillator are complementary and the inequality is “equivalent” to the uncertainty relation. Quantum correlations and the case D → ∞ are also considered. More... »

PAGES

183-188

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23

DOI

http://dx.doi.org/10.1007/978-94-017-2217-9_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031172621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering & Electronics, University of Liverpool, L69 3BX, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Electrical Engineering & Electronics, University of Liverpool, L69 3BX, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vourdas", 
        "givenName": "A.", 
        "id": "sg:person.012726447121.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Signaux et Syst\u00e8mes du CNRS, \u00c9cole Sup\u00e9rieure d\u2019\u00c9lectricit\u00e9, Plateau de Moulon, 91192, Gif\u2014sur\u2014Yvette Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.424471.0", 
          "name": [
            "Laboratoire des Signaux et Syst\u00e8mes du CNRS, \u00c9cole Sup\u00e9rieure d\u2019\u00c9lectricit\u00e9, Plateau de Moulon, 91192, Gif\u2014sur\u2014Yvette Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bendjaballah", 
        "givenName": "C.", 
        "id": "sg:person.016206427771.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016206427771.44"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "Quantum systems defined in a finite dimensional Hilbert space HD spanned by complete, finite Fourier transform states |\u03bb; n\u3009, (resp. |\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tilde \\lambda$$\\end{document}; n\u3009) with n \u2208 [1, D], (mod. D), are examined. The main properties of dual observables are briefly reviewed. The information I(\u03a9, A) associated with a measurement A of a system described by a state \u03a9, is introduced and its properties are analyzed. The inequality\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$I\\left( {\\Omega ,A} \\right) + I\\left( {\\Omega ,\\tilde A} \\right) \\leqslant \\log D\n$$\\end{document}\nis demonstrated for dual measurements (A, \u00c3). The results are then applied to some operators of interest in quantum optics. For instance, it is shown that under some conditions, the number and \u201cphase\u201d observables for a harmonic oscillator are complementary and the inequality is \u201cequivalent\u201d to the uncertainty relation. Quantum correlations and the case D \u2192 \u221e are also considered.", 
    "editor": [
      {
        "familyName": "Mohammad-Djafari", 
        "givenName": "Ali", 
        "type": "Person"
      }, 
      {
        "familyName": "Demoment", 
        "givenName": "Guy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-2217-9_23", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-4272-9", 
        "978-94-017-2217-9"
      ], 
      "name": "Maximum Entropy and Bayesian Methods", 
      "type": "Book"
    }, 
    "keywords": [
      "quantum optics", 
      "quantum correlations", 
      "quantum systems", 
      "dual measurement", 
      "uncertainty relation", 
      "harmonic oscillator", 
      "operators of interest", 
      "state \u03c9", 
      "optics", 
      "observables", 
      "main properties", 
      "measurements", 
      "oscillator", 
      "properties", 
      "state", 
      "phase", 
      "HD", 
      "system", 
      "case d", 
      "measurement A", 
      "correlation", 
      "operators", 
      "results", 
      "information", 
      "interest", 
      "relation", 
      "conditions", 
      "inequality", 
      "number", 
      "instances"
    ], 
    "name": "Dual Measurements and Information in Quantum Optics", 
    "pagination": "183-188", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031172621"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-2217-9_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-2217-9_23", 
      "https://app.dimensions.ai/details/publication/pub.1031172621"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_419.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-017-2217-9_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      22 PREDICATES      55 URIs      48 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-2217-9_23 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N3a5db3444cc947aeb29d2d3f1c6aba6f
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description Quantum systems defined in a finite dimensional Hilbert space HD spanned by complete, finite Fourier transform states |λ; n〉, (resp. |\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde \lambda$$\end{document}; n〉) with n ∈ [1, D], (mod. D), are examined. The main properties of dual observables are briefly reviewed. The information I(Ω, A) associated with a measurement A of a system described by a state Ω, is introduced and its properties are analyzed. The inequality\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\left( {\Omega ,A} \right) + I\left( {\Omega ,\tilde A} \right) \leqslant \log D $$\end{document} is demonstrated for dual measurements (A, Ã). The results are then applied to some operators of interest in quantum optics. For instance, it is shown that under some conditions, the number and “phase” observables for a harmonic oscillator are complementary and the inequality is “equivalent” to the uncertainty relation. Quantum correlations and the case D → ∞ are also considered.
7 schema:editor N406443bdc13749579584509843ce40ea
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N5984409ea0994af19f260e7795e81bd6
11 schema:keywords HD
12 case d
13 conditions
14 correlation
15 dual measurement
16 harmonic oscillator
17 inequality
18 information
19 instances
20 interest
21 main properties
22 measurement A
23 measurements
24 number
25 observables
26 operators
27 operators of interest
28 optics
29 oscillator
30 phase
31 properties
32 quantum correlations
33 quantum optics
34 quantum systems
35 relation
36 results
37 state
38 state ω
39 system
40 uncertainty relation
41 schema:name Dual Measurements and Information in Quantum Optics
42 schema:pagination 183-188
43 schema:productId N2acbd5695ba145d78567d794e0d45ce0
44 N70c95794c66b4ca79e88e7fbe5850174
45 schema:publisher N84a37d5820574e2dbad6bba15db9c501
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031172621
47 https://doi.org/10.1007/978-94-017-2217-9_23
48 schema:sdDatePublished 2022-12-01T06:53
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N9f7cc036c81f4e3abc6ca145dfed4b00
51 schema:url https://doi.org/10.1007/978-94-017-2217-9_23
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N1f3ddc9ee3834ae192740be59efd072d schema:familyName Demoment
56 schema:givenName Guy
57 rdf:type schema:Person
58 N2acbd5695ba145d78567d794e0d45ce0 schema:name dimensions_id
59 schema:value pub.1031172621
60 rdf:type schema:PropertyValue
61 N3a5db3444cc947aeb29d2d3f1c6aba6f rdf:first sg:person.012726447121.07
62 rdf:rest N75aafc08394046e0a3d7d47f085c14e4
63 N406443bdc13749579584509843ce40ea rdf:first Nfa0c58c508244826801fe3b03e228163
64 rdf:rest N5d93629604534855a647b5e692def93d
65 N5984409ea0994af19f260e7795e81bd6 schema:isbn 978-90-481-4272-9
66 978-94-017-2217-9
67 schema:name Maximum Entropy and Bayesian Methods
68 rdf:type schema:Book
69 N5d93629604534855a647b5e692def93d rdf:first N1f3ddc9ee3834ae192740be59efd072d
70 rdf:rest rdf:nil
71 N70c95794c66b4ca79e88e7fbe5850174 schema:name doi
72 schema:value 10.1007/978-94-017-2217-9_23
73 rdf:type schema:PropertyValue
74 N75aafc08394046e0a3d7d47f085c14e4 rdf:first sg:person.016206427771.44
75 rdf:rest rdf:nil
76 N84a37d5820574e2dbad6bba15db9c501 schema:name Springer Nature
77 rdf:type schema:Organisation
78 N9f7cc036c81f4e3abc6ca145dfed4b00 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nfa0c58c508244826801fe3b03e228163 schema:familyName Mohammad-Djafari
81 schema:givenName Ali
82 rdf:type schema:Person
83 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
87 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
88 rdf:type schema:DefinedTerm
89 sg:person.012726447121.07 schema:affiliation grid-institutes:grid.10025.36
90 schema:familyName Vourdas
91 schema:givenName A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07
93 rdf:type schema:Person
94 sg:person.016206427771.44 schema:affiliation grid-institutes:grid.424471.0
95 schema:familyName Bendjaballah
96 schema:givenName C.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016206427771.44
98 rdf:type schema:Person
99 grid-institutes:grid.10025.36 schema:alternateName Department of Electrical Engineering & Electronics, University of Liverpool, L69 3BX, Liverpool, UK
100 schema:name Department of Electrical Engineering & Electronics, University of Liverpool, L69 3BX, Liverpool, UK
101 rdf:type schema:Organization
102 grid-institutes:grid.424471.0 schema:alternateName Laboratoire des Signaux et Systèmes du CNRS, École Supérieure d’Électricité, Plateau de Moulon, 91192, Gif—sur—Yvette Cedex, France
103 schema:name Laboratoire des Signaux et Systèmes du CNRS, École Supérieure d’Électricité, Plateau de Moulon, 91192, Gif—sur—Yvette Cedex, France
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...