Dual Measurements and Information in Quantum Optics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

A. Vourdas , C. Bendjaballah

ABSTRACT

Quantum systems defined in a finite dimensional Hilbert space HD spanned by complete, finite Fourier transform states |λ; n〉, (resp. |\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde \lambda$$\end{document}; n〉) with n ∈ [1, D], (mod. D), are examined. The main properties of dual observables are briefly reviewed. The information I(Ω, A) associated with a measurement A of a system described by a state Ω, is introduced and its properties are analyzed. The inequality\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\left( {\Omega ,A} \right) + I\left( {\Omega ,\tilde A} \right) \leqslant \log D $$\end{document} is demonstrated for dual measurements (A, Ã). The results are then applied to some operators of interest in quantum optics. For instance, it is shown that under some conditions, the number and “phase” observables for a harmonic oscillator are complementary and the inequality is “equivalent” to the uncertainty relation. Quantum correlations and the case D → ∞ are also considered. More... »

PAGES

183-188

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23

DOI

http://dx.doi.org/10.1007/978-94-017-2217-9_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031172621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering & Electronics, University of Liverpool, L69 3BX, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Electrical Engineering & Electronics, University of Liverpool, L69 3BX, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vourdas", 
        "givenName": "A.", 
        "id": "sg:person.012726447121.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Signaux et Syst\u00e8mes du CNRS, \u00c9cole Sup\u00e9rieure d\u2019\u00c9lectricit\u00e9, Plateau de Moulon, 91192, Gif\u2014sur\u2014Yvette Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.424471.0", 
          "name": [
            "Laboratoire des Signaux et Syst\u00e8mes du CNRS, \u00c9cole Sup\u00e9rieure d\u2019\u00c9lectricit\u00e9, Plateau de Moulon, 91192, Gif\u2014sur\u2014Yvette Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bendjaballah", 
        "givenName": "C.", 
        "id": "sg:person.016206427771.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016206427771.44"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "Quantum systems defined in a finite dimensional Hilbert space HD spanned by complete, finite Fourier transform states |\u03bb; n\u3009, (resp. |\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tilde \\lambda$$\\end{document}; n\u3009) with n \u2208 [1, D], (mod. D), are examined. The main properties of dual observables are briefly reviewed. The information I(\u03a9, A) associated with a measurement A of a system described by a state \u03a9, is introduced and its properties are analyzed. The inequality\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$I\\left( {\\Omega ,A} \\right) + I\\left( {\\Omega ,\\tilde A} \\right) \\leqslant \\log D\n$$\\end{document}\nis demonstrated for dual measurements (A, \u00c3). The results are then applied to some operators of interest in quantum optics. For instance, it is shown that under some conditions, the number and \u201cphase\u201d observables for a harmonic oscillator are complementary and the inequality is \u201cequivalent\u201d to the uncertainty relation. Quantum correlations and the case D \u2192 \u221e are also considered.", 
    "editor": [
      {
        "familyName": "Mohammad-Djafari", 
        "givenName": "Ali", 
        "type": "Person"
      }, 
      {
        "familyName": "Demoment", 
        "givenName": "Guy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-2217-9_23", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-4272-9", 
        "978-94-017-2217-9"
      ], 
      "name": "Maximum Entropy and Bayesian Methods", 
      "type": "Book"
    }, 
    "keywords": [
      "quantum optics", 
      "quantum correlations", 
      "quantum systems", 
      "dual measurement", 
      "uncertainty relation", 
      "harmonic oscillator", 
      "operators of interest", 
      "state \u03c9", 
      "optics", 
      "observables", 
      "main properties", 
      "measurements", 
      "oscillator", 
      "properties", 
      "state", 
      "phase", 
      "HD", 
      "system", 
      "case d", 
      "measurement A", 
      "correlation", 
      "operators", 
      "results", 
      "information", 
      "interest", 
      "relation", 
      "conditions", 
      "inequality", 
      "number", 
      "instances"
    ], 
    "name": "Dual Measurements and Information in Quantum Optics", 
    "pagination": "183-188", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031172621"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-2217-9_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-2217-9_23", 
      "https://app.dimensions.ai/details/publication/pub.1031172621"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_365.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-017-2217-9_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2217-9_23'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      22 PREDICATES      55 URIs      48 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-2217-9_23 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N113942577a1c4e888807ffae0c0e4ad6
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description Quantum systems defined in a finite dimensional Hilbert space HD spanned by complete, finite Fourier transform states |λ; n〉, (resp. |\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde \lambda$$\end{document}; n〉) with n ∈ [1, D], (mod. D), are examined. The main properties of dual observables are briefly reviewed. The information I(Ω, A) associated with a measurement A of a system described by a state Ω, is introduced and its properties are analyzed. The inequality\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\left( {\Omega ,A} \right) + I\left( {\Omega ,\tilde A} \right) \leqslant \log D $$\end{document} is demonstrated for dual measurements (A, Ã). The results are then applied to some operators of interest in quantum optics. For instance, it is shown that under some conditions, the number and “phase” observables for a harmonic oscillator are complementary and the inequality is “equivalent” to the uncertainty relation. Quantum correlations and the case D → ∞ are also considered.
7 schema:editor N1ce2a6418c9246e0a18435e84cc6455f
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nf8c7502d061348e4a739c56016c54ec3
11 schema:keywords HD
12 case d
13 conditions
14 correlation
15 dual measurement
16 harmonic oscillator
17 inequality
18 information
19 instances
20 interest
21 main properties
22 measurement A
23 measurements
24 number
25 observables
26 operators
27 operators of interest
28 optics
29 oscillator
30 phase
31 properties
32 quantum correlations
33 quantum optics
34 quantum systems
35 relation
36 results
37 state
38 state ω
39 system
40 uncertainty relation
41 schema:name Dual Measurements and Information in Quantum Optics
42 schema:pagination 183-188
43 schema:productId N26a68425e4944a26886ee1c6da8074ca
44 N2e28c1cb34b743f4a43173e2ecb315ef
45 schema:publisher N86cf4220909f429aa5fec101d545d0f5
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031172621
47 https://doi.org/10.1007/978-94-017-2217-9_23
48 schema:sdDatePublished 2022-10-01T06:57
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nb6917eb9bada43e1af398723176adc33
51 schema:url https://doi.org/10.1007/978-94-017-2217-9_23
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N113942577a1c4e888807ffae0c0e4ad6 rdf:first sg:person.012726447121.07
56 rdf:rest N1b12d12087cd406591af1a5fdc389a56
57 N1b12d12087cd406591af1a5fdc389a56 rdf:first sg:person.016206427771.44
58 rdf:rest rdf:nil
59 N1ce2a6418c9246e0a18435e84cc6455f rdf:first N787d1be2df2b4964bc3a9096d2f65ebb
60 rdf:rest Nee17fcd4e1c34e8b8faa148b9378f354
61 N26a68425e4944a26886ee1c6da8074ca schema:name doi
62 schema:value 10.1007/978-94-017-2217-9_23
63 rdf:type schema:PropertyValue
64 N2e28c1cb34b743f4a43173e2ecb315ef schema:name dimensions_id
65 schema:value pub.1031172621
66 rdf:type schema:PropertyValue
67 N787d1be2df2b4964bc3a9096d2f65ebb schema:familyName Mohammad-Djafari
68 schema:givenName Ali
69 rdf:type schema:Person
70 N86cf4220909f429aa5fec101d545d0f5 schema:name Springer Nature
71 rdf:type schema:Organisation
72 Nb6917eb9bada43e1af398723176adc33 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nbc71e31c1160400d9c3eab89b41afea7 schema:familyName Demoment
75 schema:givenName Guy
76 rdf:type schema:Person
77 Nee17fcd4e1c34e8b8faa148b9378f354 rdf:first Nbc71e31c1160400d9c3eab89b41afea7
78 rdf:rest rdf:nil
79 Nf8c7502d061348e4a739c56016c54ec3 schema:isbn 978-90-481-4272-9
80 978-94-017-2217-9
81 schema:name Maximum Entropy and Bayesian Methods
82 rdf:type schema:Book
83 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
87 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
88 rdf:type schema:DefinedTerm
89 sg:person.012726447121.07 schema:affiliation grid-institutes:grid.10025.36
90 schema:familyName Vourdas
91 schema:givenName A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07
93 rdf:type schema:Person
94 sg:person.016206427771.44 schema:affiliation grid-institutes:grid.424471.0
95 schema:familyName Bendjaballah
96 schema:givenName C.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016206427771.44
98 rdf:type schema:Person
99 grid-institutes:grid.10025.36 schema:alternateName Department of Electrical Engineering & Electronics, University of Liverpool, L69 3BX, Liverpool, UK
100 schema:name Department of Electrical Engineering & Electronics, University of Liverpool, L69 3BX, Liverpool, UK
101 rdf:type schema:Organization
102 grid-institutes:grid.424471.0 schema:alternateName Laboratoire des Signaux et Systèmes du CNRS, École Supérieure d’Électricité, Plateau de Moulon, 91192, Gif—sur—Yvette Cedex, France
103 schema:name Laboratoire des Signaux et Systèmes du CNRS, École Supérieure d’Électricité, Plateau de Moulon, 91192, Gif—sur—Yvette Cedex, France
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...