Idempotent Analysis and Its Applications

Ontology type: schema:Book

Book Info

DATE

1997

GENRE

Monograph

AUTHORS PUBLISHER

Springer Nature

ABSTRACT

The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In §1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An . More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-015-8901-7

DOI

http://dx.doi.org/10.1007/978-94-015-8901-7

ISBN

978-90-481-4834-9 | 978-94-015-8901-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008169901

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

``````[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of New Technologies, Moscow, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Mathematical Statistics, Nottingham Trent University, Nottingham, England",
"Institute of New Technologies, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Kolokoltsov",
"givenName": "Vassili N.",
"id": "sg:person.010400240472.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010400240472.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Moscow State University, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.14476.30",
"name": [
"Department of Physics, Moscow State University, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Maslov",
"givenName": "Victor P.",
"id": "sg:person.014224747737.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224747737.06"
],
"type": "Person"
}
],
"datePublished": "1997",
"datePublishedReg": "1997-01-01",
"description": "The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In \u00a71. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .",
"genre": "monograph",
"id": "sg:pub.10.1007/978-94-015-8901-7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isbn": [
"978-90-481-4834-9",
"978-94-015-8901-7"
],
"keywords": [
"idempotent analysis",
"linear algebra",
"idempotent semirings",
"theoretical computer science",
"system of equations",
"mathematical physics",
"idempotent analogue",
"idempotent algebras",
"mathematical economics",
"linear operators",
"algebra formalism",
"linear equations",
"algebra",
"finite alphabet",
"concise exposition",
"first chapter deals",
"nontrivial idempotent",
"semirings",
"equations",
"computer science",
"biomathematics",
"physics",
"endomorphisms",
"semimodules",
"formalism",
"idempotents",
"operators",
"applications",
"important fact",
"Kleene",
"space",
"chapter deals",
"exposition",
"properties",
"alphabet",
"system",
"analysis",
"fact",
"science",
"module",
"deal",
"logic",
"ions",
"sections",
"analogues",
"literature",
"An",
"economics",
"words",
"parsing",
"language",
"idempotent linear algebra",
"semirn- ules An",
"noncommutative semiring",
"optimizat ion",
"idempotent algebra formalism",
"tor spaces",
"semi modules"
],
"name": "Idempotent Analysis and Its Applications",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008169901"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-015-8901-7"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-015-8901-7",
"https://app.dimensions.ai/details/publication/pub.1008169901"
],
"sdDataset": "books",
"sdDatePublished": "2021-11-01T18:44",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/book/book_17.jsonl",
"type": "Book",
"url": "https://doi.org/10.1007/978-94-015-8901-7"
}
]``````

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

`curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8901-7'`

N-Triples is a line-based linked data format ideal for batch operations.

`curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8901-7'`

Turtle is a human-readable linked data format.

`curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8901-7'`

RDF/XML is a standard XML format for linked data.

`curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8901-7'`

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      85 URIs      78 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-015-8901-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd756f677e905419bb6a27d207e09bb9e
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In §1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .
7 schema:genre monograph
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isbn 978-90-481-4834-9
11 978-94-015-8901-7
12 schema:keywords An
13 Kleene
15 algebra
16 algebra formalism
17 alphabet
18 analogues
19 analysis
20 applications
21 biomathematics
22 chapter deals
23 computer science
24 concise exposition
25 deal
26 economics
27 endomorphisms
28 equations
29 exposition
30 fact
31 finite alphabet
32 first chapter deals
33 formalism
35 idempotent algebra formalism
36 idempotent algebras
37 idempotent analogue
38 idempotent analysis
39 idempotent linear algebra
40 idempotent semirings
41 idempotents
42 important fact
43 ions
44 language
45 linear algebra
46 linear equations
47 linear operators
48 literature
49 logic
50 mathematical economics
51 mathematical physics
52 module
53 noncommutative semiring
54 nontrivial idempotent
55 operators
56 optimizat ion
57 parsing
58 physics
59 properties
60 science
61 sections
62 semi modules
63 semimodules
64 semirings
65 semirn- ules An
66 space
67 system
68 system of equations
69 theoretical computer science
70 tor spaces
71 words
72 schema:name Idempotent Analysis and Its Applications
73 schema:productId N3ddef9c613434de5880fee8fa27829d5
74 N797c6c8e1b924147959294c0feec90aa
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008169901
77 https://doi.org/10.1007/978-94-015-8901-7
78 schema:sdDatePublished 2021-11-01T18:44
80 schema:sdPublisher N85a5e186f1ce45aa9d611017d76464ae
81 schema:url https://doi.org/10.1007/978-94-015-8901-7
83 sgo:sdDataset books
84 rdf:type schema:Book
85 N1cb9fb3abafa4c9e848b07784440f274 rdf:first sg:person.014224747737.06
86 rdf:rest rdf:nil
87 N34e95d9f81084332a70e3cfdbf9ad4ef schema:name Springer Nature
88 rdf:type schema:Organisation
89 N3ddef9c613434de5880fee8fa27829d5 schema:name doi
90 schema:value 10.1007/978-94-015-8901-7
91 rdf:type schema:PropertyValue
92 N797c6c8e1b924147959294c0feec90aa schema:name dimensions_id
93 schema:value pub.1008169901
94 rdf:type schema:PropertyValue
95 N85a5e186f1ce45aa9d611017d76464ae schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nd756f677e905419bb6a27d207e09bb9e rdf:first sg:person.010400240472.41
98 rdf:rest N1cb9fb3abafa4c9e848b07784440f274
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
103 schema:name Pure Mathematics
104 rdf:type schema:DefinedTerm
105 sg:person.010400240472.41 schema:affiliation grid-institutes:None
106 schema:familyName Kolokoltsov
107 schema:givenName Vassili N.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010400240472.41
109 rdf:type schema:Person
110 sg:person.014224747737.06 schema:affiliation grid-institutes:grid.14476.30
111 schema:familyName Maslov
112 schema:givenName Victor P.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224747737.06
114 rdf:type schema:Person
115 grid-institutes:None schema:alternateName Institute of New Technologies, Moscow, Russia
116 schema:name Department of Mathematical Statistics, Nottingham Trent University, Nottingham, England
117 Institute of New Technologies, Moscow, Russia
118 rdf:type schema:Organization
119 grid-institutes:grid.14476.30 schema:alternateName Department of Physics, Moscow State University, Moscow, Russia
120 schema:name Department of Physics, Moscow State University, Moscow, Russia
121 rdf:type schema:Organization

Preview window. Press ESC to close (or click here)

...