Laser-Experiments with Single Atoms in Cavities and Traps View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

H. Walther

ABSTRACT

Today frequency tunable lasers enable us to achieve an efficient excitation of atomic resonance lines. In this way it becomes possible to detect single atoms via their fluorescence. An additional advantage is that traps exist for ions[1] as well as for neutral atoms[2] so that the observation of isolated particles is possible. Presently the techniques for trapping atoms are undergoing a rapid development, however, experiments with single isolated atoms using those methods have not yet been realized. Therefore the observation of single trapped particles is still restricted to ions. In the following experiments with single ions will be reviewed; furthermore we will describe the experiments performed with the one-atom maser where single atoms interact with a single mode of a maser field. The atoms in this case are Rydberg atoms with high excitation energies, which can efficiently be detected by ionization in an external electrical field in which the outermost electron is pulled off. We will start this contribution with the review of the one-atom maser. More... »

PAGES

69-98

Book

TITLE

Quantum Optics and the Spectroscopy of Solids

ISBN

978-90-481-4797-7
978-94-015-8796-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-015-8796-9_4

DOI

http://dx.doi.org/10.1007/978-94-015-8796-9_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040665731


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Quantenoptik, 85748, Garching, Fed. Rep. of Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Sektion Physik, Universit\u00e4t M\u00fcnchen, Germany", 
            "Max-Planck-Institut f\u00fcr Quantenoptik, 85748, Garching, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther", 
        "givenName": "H.", 
        "id": "sg:person.016355234775.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "Today frequency tunable lasers enable us to achieve an efficient excitation of atomic resonance lines. In this way it becomes possible to detect single atoms via their fluorescence. An additional advantage is that traps exist for ions[1] as well as for neutral atoms[2] so that the observation of isolated particles is possible. Presently the techniques for trapping atoms are undergoing a rapid development, however, experiments with single isolated atoms using those methods have not yet been realized. Therefore the observation of single trapped particles is still restricted to ions. In the following experiments with single ions will be reviewed; furthermore we will describe the experiments performed with the one-atom maser where single atoms interact with a single mode of a maser field. The atoms in this case are Rydberg atoms with high excitation energies, which can efficiently be detected by ionization in an external electrical field in which the outermost electron is pulled off. We will start this contribution with the review of the one-atom maser.", 
    "editor": [
      {
        "familyName": "Hakio\u011flu", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "familyName": "Shumovsky", 
        "givenName": "A. S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-015-8796-9_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-4797-7", 
        "978-94-015-8796-9"
      ], 
      "name": "Quantum Optics and the Spectroscopy of Solids", 
      "type": "Book"
    }, 
    "keywords": [
      "one-atom maser", 
      "single atoms", 
      "atomic resonance lines", 
      "frequency tunable laser", 
      "single isolated atom", 
      "high excitation energies", 
      "Rydberg atoms", 
      "tunable laser", 
      "maser field", 
      "external electrical field", 
      "outermost electrons", 
      "isolated atom", 
      "single ion", 
      "efficient excitation", 
      "excitation energy", 
      "resonance lines", 
      "single mode", 
      "atoms", 
      "masers", 
      "electrical field", 
      "ions", 
      "traps", 
      "particles", 
      "electrons", 
      "laser", 
      "ionization", 
      "field", 
      "excitation", 
      "energy", 
      "experiments", 
      "fluorescence", 
      "additional advantage", 
      "cavity", 
      "mode", 
      "technique", 
      "contribution", 
      "lines", 
      "advantages", 
      "method", 
      "rapid development", 
      "way", 
      "cases", 
      "development", 
      "review", 
      "observations", 
      "Today frequency tunable lasers"
    ], 
    "name": "Laser-Experiments with Single Atoms in Cavities and Traps", 
    "pagination": "69-98", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040665731"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-015-8796-9_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-015-8796-9_4", 
      "https://app.dimensions.ai/details/publication/pub.1040665731"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_443.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-015-8796-9_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8796-9_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8796-9_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8796-9_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8796-9_4'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      23 PREDICATES      73 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-015-8796-9_4 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author Neb82cacb8502455d947828c43e356fbf
5 schema:datePublished 1997
6 schema:datePublishedReg 1997-01-01
7 schema:description Today frequency tunable lasers enable us to achieve an efficient excitation of atomic resonance lines. In this way it becomes possible to detect single atoms via their fluorescence. An additional advantage is that traps exist for ions[1] as well as for neutral atoms[2] so that the observation of isolated particles is possible. Presently the techniques for trapping atoms are undergoing a rapid development, however, experiments with single isolated atoms using those methods have not yet been realized. Therefore the observation of single trapped particles is still restricted to ions. In the following experiments with single ions will be reviewed; furthermore we will describe the experiments performed with the one-atom maser where single atoms interact with a single mode of a maser field. The atoms in this case are Rydberg atoms with high excitation energies, which can efficiently be detected by ionization in an external electrical field in which the outermost electron is pulled off. We will start this contribution with the review of the one-atom maser.
8 schema:editor N4700c96e9ff34dda938401d04e8a691c
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N9996f31ff4ad4c2ea240866a2096c23f
13 schema:keywords Rydberg atoms
14 Today frequency tunable lasers
15 additional advantage
16 advantages
17 atomic resonance lines
18 atoms
19 cases
20 cavity
21 contribution
22 development
23 efficient excitation
24 electrical field
25 electrons
26 energy
27 excitation
28 excitation energy
29 experiments
30 external electrical field
31 field
32 fluorescence
33 frequency tunable laser
34 high excitation energies
35 ionization
36 ions
37 isolated atom
38 laser
39 lines
40 maser field
41 masers
42 method
43 mode
44 observations
45 one-atom maser
46 outermost electrons
47 particles
48 rapid development
49 resonance lines
50 review
51 single atoms
52 single ion
53 single isolated atom
54 single mode
55 technique
56 traps
57 tunable laser
58 way
59 schema:name Laser-Experiments with Single Atoms in Cavities and Traps
60 schema:pagination 69-98
61 schema:productId N953d4620c0bf48e881383478f67b8eaa
62 Nc2f454cbffb94afa86a1f2f99d3b174a
63 schema:publisher N77834d6c2c89443581e45d3f90b5b1e9
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040665731
65 https://doi.org/10.1007/978-94-015-8796-9_4
66 schema:sdDatePublished 2021-11-01T19:01
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N9f7501c3e31d453581823bb0dbb6ebcb
69 schema:url https://doi.org/10.1007/978-94-015-8796-9_4
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N0ca912d0da6e4d33adcc806396d1a4c8 schema:familyName Hakioğlu
74 schema:givenName T.
75 rdf:type schema:Person
76 N1d98ac0a88cf4e8680db2058a82d981c rdf:first N2abb4295f7eb4d26bf9a28347c66ab34
77 rdf:rest rdf:nil
78 N2abb4295f7eb4d26bf9a28347c66ab34 schema:familyName Shumovsky
79 schema:givenName A. S.
80 rdf:type schema:Person
81 N4700c96e9ff34dda938401d04e8a691c rdf:first N0ca912d0da6e4d33adcc806396d1a4c8
82 rdf:rest N1d98ac0a88cf4e8680db2058a82d981c
83 N77834d6c2c89443581e45d3f90b5b1e9 schema:name Springer Nature
84 rdf:type schema:Organisation
85 N953d4620c0bf48e881383478f67b8eaa schema:name dimensions_id
86 schema:value pub.1040665731
87 rdf:type schema:PropertyValue
88 N9996f31ff4ad4c2ea240866a2096c23f schema:isbn 978-90-481-4797-7
89 978-94-015-8796-9
90 schema:name Quantum Optics and the Spectroscopy of Solids
91 rdf:type schema:Book
92 N9f7501c3e31d453581823bb0dbb6ebcb schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nc2f454cbffb94afa86a1f2f99d3b174a schema:name doi
95 schema:value 10.1007/978-94-015-8796-9_4
96 rdf:type schema:PropertyValue
97 Neb82cacb8502455d947828c43e356fbf rdf:first sg:person.016355234775.61
98 rdf:rest rdf:nil
99 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
103 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
106 schema:name Other Physical Sciences
107 rdf:type schema:DefinedTerm
108 sg:person.016355234775.61 schema:affiliation grid-institutes:None
109 schema:familyName Walther
110 schema:givenName H.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61
112 rdf:type schema:Person
113 grid-institutes:None schema:alternateName Max-Planck-Institut für Quantenoptik, 85748, Garching, Fed. Rep. of Germany
114 schema:name Max-Planck-Institut für Quantenoptik, 85748, Garching, Fed. Rep. of Germany
115 Sektion Physik, Universität München, Germany
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...