Photoinduced Electron Transfer in Bis-Porphyrin-Stoppered [2]-Rotaxanes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

J.-C. Chambron , S. Chardon-Noblat , A. Harriman , V. Heitz , J.-P. Sauvage

ABSTRACT

Natural photosynthesis represents the very essence of life since it is the process by which green plants convert light energy into usable chemical energy. The so-called photosynthetic bacteria are also able to perform the same process. In fact, these microorganisms are the simplest natural photosynthetic systems and the mechanism of conversion of photonic energy into chemical energy is now quite well understood. This process takes place in the photosynthetic membrane [1]. As shown schematically in Figure 1, essentially three protein complexes work together: the Reaction Center (RC), a cytochrome b/c1 complex and a cytochrome c2. An overview of their function is as follows: shortly after light excitation of the RC, a hydroquinone (in fact a reduced ubiquinone which has picked up its two protons from the cytoplasma) dissociates from the RC and migrates to the cytochrome b/c1 complex, where it delivers its two protons to the periplasma and two electrons which are reinjected into the RC via a cytochrome c2 shuttle. The released quinone can now reintegrate the ubiquinone pool and feed back the RC. In short, light excitation of the RC results in a cyclic flow of electrons coupled to the development of a proton gradient across the photosynthetic membrane. This proton gradient is chemical energy which is used by the enzyme ATP-synthase in the synthesis of ATP from ADP and inorganic phosphate. More... »

PAGES

215-234

Book

TITLE

Molecular Engineering for Advanced Materials

ISBN

978-90-481-4521-8
978-94-015-8575-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-015-8575-0_12

DOI

http://dx.doi.org/10.1007/978-94-015-8575-0_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009482967


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Strasbourg", 
          "id": "https://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Laboratoire de Chimie Organo-Min\u00e9rale, associ\u00e9 au CNRS, Facult\u00e9 de Chimie, Universit\u00e9 Louis Pasteur, 67000\u00a0Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chambron", 
        "givenName": "J.-C.", 
        "id": "sg:person.014677066334.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014677066334.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Strasbourg", 
          "id": "https://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Laboratoire de Chimie Organo-Min\u00e9rale, associ\u00e9 au CNRS, Facult\u00e9 de Chimie, Universit\u00e9 Louis Pasteur, 67000\u00a0Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chardon-Noblat", 
        "givenName": "S.", 
        "id": "sg:person.01047355770.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047355770.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Strasbourg", 
          "id": "https://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Laboratoire de Chimie Organo-Min\u00e9rale, associ\u00e9 au CNRS, Facult\u00e9 de Chimie, Universit\u00e9 Louis Pasteur, 67000\u00a0Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harriman", 
        "givenName": "A.", 
        "id": "sg:person.01174174540.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174174540.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Strasbourg", 
          "id": "https://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Laboratoire de Chimie Organo-Min\u00e9rale, associ\u00e9 au CNRS, Facult\u00e9 de Chimie, Universit\u00e9 Louis Pasteur, 67000\u00a0Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heitz", 
        "givenName": "V.", 
        "id": "sg:person.01362476351.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362476351.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Strasbourg", 
          "id": "https://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Laboratoire de Chimie Organo-Min\u00e9rale, associ\u00e9 au CNRS, Facult\u00e9 de Chimie, Universit\u00e9 Louis Pasteur, 67000\u00a0Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauvage", 
        "givenName": "J.-P.", 
        "id": "sg:person.01025725303.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025725303.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0040-4039(91)80853-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009892567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.198905931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025033388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-4020(01)87125-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026845699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-4039(00)87220-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100124a027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055654011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100363a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055666967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00023a012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055699876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00038a028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055701186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00079a019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055705034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00202a020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055713900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00889a038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055755224"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "Natural photosynthesis represents the very essence of life since it is the process by which green plants convert light energy into usable chemical energy. The so-called photosynthetic bacteria are also able to perform the same process. In fact, these microorganisms are the simplest natural photosynthetic systems and the mechanism of conversion of photonic energy into chemical energy is now quite well understood. This process takes place in the photosynthetic membrane [1]. As shown schematically in Figure 1, essentially three protein complexes work together: the Reaction Center (RC), a cytochrome b/c1 complex and a cytochrome c2. An overview of their function is as follows: shortly after light excitation of the RC, a hydroquinone (in fact a reduced ubiquinone which has picked up its two protons from the cytoplasma) dissociates from the RC and migrates to the cytochrome b/c1 complex, where it delivers its two protons to the periplasma and two electrons which are reinjected into the RC via a cytochrome c2 shuttle. The released quinone can now reintegrate the ubiquinone pool and feed back the RC. In short, light excitation of the RC results in a cyclic flow of electrons coupled to the development of a proton gradient across the photosynthetic membrane. This proton gradient is chemical energy which is used by the enzyme ATP-synthase in the synthesis of ATP from ADP and inorganic phosphate.", 
    "editor": [
      {
        "familyName": "Becher", 
        "givenName": "Jan", 
        "type": "Person"
      }, 
      {
        "familyName": "Schaumburg", 
        "givenName": "Kjeld", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-015-8575-0_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-4521-8", 
        "978-94-015-8575-0"
      ], 
      "name": "Molecular Engineering for Advanced Materials", 
      "type": "Book"
    }, 
    "name": "Photoinduced Electron Transfer in Bis-Porphyrin-Stoppered [2]-Rotaxanes", 
    "pagination": "215-234", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-015-8575-0_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d2c340a186f8c173148d490c0f1c290a4ed45a8e176986799a8e7d0abe0248a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009482967"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-015-8575-0_12", 
      "https://app.dimensions.ai/details/publication/pub.1009482967"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000249.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-94-015-8575-0_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8575-0_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8575-0_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8575-0_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-8575-0_12'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-015-8575-0_12 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N46d2893ac9e04f6993b15bf9c7ce75b9
4 schema:citation https://doi.org/10.1002/anie.198905931
5 https://doi.org/10.1016/0040-4039(91)80853-x
6 https://doi.org/10.1016/s0040-4020(01)87125-8
7 https://doi.org/10.1016/s0040-4039(00)87220-2
8 https://doi.org/10.1021/j100124a027
9 https://doi.org/10.1021/j100363a004
10 https://doi.org/10.1021/ja00023a012
11 https://doi.org/10.1021/ja00038a028
12 https://doi.org/10.1021/ja00079a019
13 https://doi.org/10.1021/ja00202a020
14 https://doi.org/10.1021/ja00889a038
15 schema:datePublished 1995
16 schema:datePublishedReg 1995-01-01
17 schema:description Natural photosynthesis represents the very essence of life since it is the process by which green plants convert light energy into usable chemical energy. The so-called photosynthetic bacteria are also able to perform the same process. In fact, these microorganisms are the simplest natural photosynthetic systems and the mechanism of conversion of photonic energy into chemical energy is now quite well understood. This process takes place in the photosynthetic membrane [1]. As shown schematically in Figure 1, essentially three protein complexes work together: the Reaction Center (RC), a cytochrome b/c1 complex and a cytochrome c2. An overview of their function is as follows: shortly after light excitation of the RC, a hydroquinone (in fact a reduced ubiquinone which has picked up its two protons from the cytoplasma) dissociates from the RC and migrates to the cytochrome b/c1 complex, where it delivers its two protons to the periplasma and two electrons which are reinjected into the RC via a cytochrome c2 shuttle. The released quinone can now reintegrate the ubiquinone pool and feed back the RC. In short, light excitation of the RC results in a cyclic flow of electrons coupled to the development of a proton gradient across the photosynthetic membrane. This proton gradient is chemical energy which is used by the enzyme ATP-synthase in the synthesis of ATP from ADP and inorganic phosphate.
18 schema:editor Ne458d5435c594f558e7482f33cf796ab
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Ndb73fdb5fd7c491cb2273f557e727f18
23 schema:name Photoinduced Electron Transfer in Bis-Porphyrin-Stoppered [2]-Rotaxanes
24 schema:pagination 215-234
25 schema:productId N8527b94ffedb4142918b41550879c258
26 N9af9fb14f49b4cd3830d15a9cf7d7c08
27 Nd4ec65cacbbd4bb1b054f605bd395f3d
28 schema:publisher N268f00c103b14834a929277864c13b55
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009482967
30 https://doi.org/10.1007/978-94-015-8575-0_12
31 schema:sdDatePublished 2019-04-15T17:11
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N2be51ccc7a0f47379a54a3d8d0e78e23
34 schema:url http://link.springer.com/10.1007/978-94-015-8575-0_12
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N0cfbfa32028344578d5e725dc4dbda67 rdf:first sg:person.01174174540.97
39 rdf:rest N72da8a3cf08d43b39766f759a784192f
40 N18d7f570b4c04f5cb080bcc1fe0d9e76 rdf:first N2ecc185ec4f04c0aab32401eabffcc05
41 rdf:rest rdf:nil
42 N268f00c103b14834a929277864c13b55 schema:location Dordrecht
43 schema:name Springer Netherlands
44 rdf:type schema:Organisation
45 N2be51ccc7a0f47379a54a3d8d0e78e23 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N2ecc185ec4f04c0aab32401eabffcc05 schema:familyName Schaumburg
48 schema:givenName Kjeld
49 rdf:type schema:Person
50 N46d2893ac9e04f6993b15bf9c7ce75b9 rdf:first sg:person.014677066334.28
51 rdf:rest Nd891e54389664bc3bae2977dee86869e
52 N68866fee85fe4340b19666272acf55a8 rdf:first sg:person.01025725303.67
53 rdf:rest rdf:nil
54 N72da8a3cf08d43b39766f759a784192f rdf:first sg:person.01362476351.48
55 rdf:rest N68866fee85fe4340b19666272acf55a8
56 N8527b94ffedb4142918b41550879c258 schema:name doi
57 schema:value 10.1007/978-94-015-8575-0_12
58 rdf:type schema:PropertyValue
59 N8575f9b9cb6846a381c9faeb53110433 schema:familyName Becher
60 schema:givenName Jan
61 rdf:type schema:Person
62 N9af9fb14f49b4cd3830d15a9cf7d7c08 schema:name readcube_id
63 schema:value 2d2c340a186f8c173148d490c0f1c290a4ed45a8e176986799a8e7d0abe0248a
64 rdf:type schema:PropertyValue
65 Nd4ec65cacbbd4bb1b054f605bd395f3d schema:name dimensions_id
66 schema:value pub.1009482967
67 rdf:type schema:PropertyValue
68 Nd891e54389664bc3bae2977dee86869e rdf:first sg:person.01047355770.29
69 rdf:rest N0cfbfa32028344578d5e725dc4dbda67
70 Ndb73fdb5fd7c491cb2273f557e727f18 schema:isbn 978-90-481-4521-8
71 978-94-015-8575-0
72 schema:name Molecular Engineering for Advanced Materials
73 rdf:type schema:Book
74 Ne458d5435c594f558e7482f33cf796ab rdf:first N8575f9b9cb6846a381c9faeb53110433
75 rdf:rest N18d7f570b4c04f5cb080bcc1fe0d9e76
76 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
77 schema:name Biological Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
80 schema:name Biochemistry and Cell Biology
81 rdf:type schema:DefinedTerm
82 sg:person.01025725303.67 schema:affiliation https://www.grid.ac/institutes/grid.11843.3f
83 schema:familyName Sauvage
84 schema:givenName J.-P.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025725303.67
86 rdf:type schema:Person
87 sg:person.01047355770.29 schema:affiliation https://www.grid.ac/institutes/grid.11843.3f
88 schema:familyName Chardon-Noblat
89 schema:givenName S.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047355770.29
91 rdf:type schema:Person
92 sg:person.01174174540.97 schema:affiliation https://www.grid.ac/institutes/grid.11843.3f
93 schema:familyName Harriman
94 schema:givenName A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174174540.97
96 rdf:type schema:Person
97 sg:person.01362476351.48 schema:affiliation https://www.grid.ac/institutes/grid.11843.3f
98 schema:familyName Heitz
99 schema:givenName V.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362476351.48
101 rdf:type schema:Person
102 sg:person.014677066334.28 schema:affiliation https://www.grid.ac/institutes/grid.11843.3f
103 schema:familyName Chambron
104 schema:givenName J.-C.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014677066334.28
106 rdf:type schema:Person
107 https://doi.org/10.1002/anie.198905931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025033388
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0040-4039(91)80853-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009892567
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0040-4020(01)87125-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026845699
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0040-4039(00)87220-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155141
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/j100124a027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055654011
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/j100363a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055666967
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/ja00023a012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055699876
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/ja00038a028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055701186
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/ja00079a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055705034
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/ja00202a020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055713900
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/ja00889a038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055755224
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.11843.3f schema:alternateName University of Strasbourg
130 schema:name Laboratoire de Chimie Organo-Minérale, associé au CNRS, Faculté de Chimie, Université Louis Pasteur, 67000 Strasbourg, France
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...