A Nonparametric Approach To Dependence For Bivariate Censored Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

O. Pons , A. Kaddour , E. De Turckheim

ABSTRACT

The two components of a bivariate survival time are independent on an interval if and only if the joint cumulative hazard function A equals the product of the marginal ones Λ1 Λ2 on this interval. Then a test of independence is based on the difference process Zn between estimators of these functions. Under an independent censorship, the empirical estimator of Λ generalizes Nelson-Aalen’s estimator. Tests based on Zn are simulated and compared with other independence tests. In the case of two time intervals between successive failures submitted to a single censoring time, we define a more appropriated estimator of Λ. In both cases, we prove weak convergence of the statistic supt ∣ Zn(t) ∣ associated with triangular sequences of data and derive a bootstrap test having a fixed asymptotic level. These notions are extended to take into account the effect of covariates on the two components and to test independence conditionally on the covariates. More... »

PAGES

381-392

References to SciGraph publications

  • 1984. A course on empirical processes in ÉCOLE D'ÉTÉ DE PROBABILITÉS DE SAINT-FLOUR XII - 1982
  • 1984. Convergence of Stochastic Processes in NONE
  • Book

    TITLE

    Survival Analysis: State of the Art

    ISBN

    978-90-481-4133-3
    978-94-015-7983-4

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-015-7983-4_23

    DOI

    http://dx.doi.org/10.1007/978-94-015-7983-4_23

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046340419


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Biometrie, INRA, 78352\u00a0Jouy-en-Josas cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pons", 
            "givenName": "O.", 
            "id": "sg:person.014426657133.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426657133.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Biometrie, INRA, 78352\u00a0Jouy-en-Josas cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaddour", 
            "givenName": "A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Biometrie, INRA, 78352\u00a0Jouy-en-Josas cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Turckheim", 
            "givenName": "E.", 
            "id": "sg:person.013270432111.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270432111.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1214/aos/1176349847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012395133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0099432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032305656", 
              "https://doi.org/10.1007/bfb0099432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5254-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039634457", 
              "https://doi.org/10.1007/978-1-4612-5254-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5254-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039634457", 
              "https://doi.org/10.1007/978-1-4612-5254-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176349853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044437453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/69.2.351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059419186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/75.2.379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059419825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176347007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064408239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176347865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064408458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176349931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064408977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176351049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064409317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1402489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069472985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2530458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069975967"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992", 
        "datePublishedReg": "1992-01-01", 
        "description": "The two components of a bivariate survival time are independent on an interval if and only if the joint cumulative hazard function A equals the product of the marginal ones \u039b1 \u039b2 on this interval. Then a test of independence is based on the difference process Zn between estimators of these functions. Under an independent censorship, the empirical estimator of \u039b generalizes Nelson-Aalen\u2019s estimator. Tests based on Zn are simulated and compared with other independence tests. In the case of two time intervals between successive failures submitted to a single censoring time, we define a more appropriated estimator of \u039b. In both cases, we prove weak convergence of the statistic supt \u2223 Zn(t) \u2223 associated with triangular sequences of data and derive a bootstrap test having a fixed asymptotic level. These notions are extended to take into account the effect of covariates on the two components and to test independence conditionally on the covariates.", 
        "editor": [
          {
            "familyName": "Klein", 
            "givenName": "John P.", 
            "type": "Person"
          }, 
          {
            "familyName": "Goel", 
            "givenName": "Prem K.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-015-7983-4_23", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-90-481-4133-3", 
            "978-94-015-7983-4"
          ], 
          "name": "Survival Analysis: State of the Art", 
          "type": "Book"
        }, 
        "name": "A Nonparametric Approach To Dependence For Bivariate Censored Data", 
        "pagination": "381-392", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-015-7983-4_23"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dcbe9db3d612a75139cb463a28f385d904683262454db3eeefe1c4efe6ecbda8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046340419"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-015-7983-4_23", 
          "https://app.dimensions.ai/details/publication/pub.1046340419"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000272.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-94-015-7983-4_23"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-7983-4_23'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-7983-4_23'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-7983-4_23'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-7983-4_23'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-015-7983-4_23 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N20d40066765643b19901d00ac22fea35
    4 schema:citation sg:pub.10.1007/978-1-4612-5254-2
    5 sg:pub.10.1007/bfb0099432
    6 https://doi.org/10.1093/biomet/69.2.351
    7 https://doi.org/10.1093/biomet/75.2.379
    8 https://doi.org/10.1214/aos/1176347007
    9 https://doi.org/10.1214/aos/1176347865
    10 https://doi.org/10.1214/aos/1176349847
    11 https://doi.org/10.1214/aos/1176349853
    12 https://doi.org/10.1214/aos/1176349931
    13 https://doi.org/10.1214/aos/1176351049
    14 https://doi.org/10.2307/1402489
    15 https://doi.org/10.2307/2530458
    16 schema:datePublished 1992
    17 schema:datePublishedReg 1992-01-01
    18 schema:description The two components of a bivariate survival time are independent on an interval if and only if the joint cumulative hazard function A equals the product of the marginal ones Λ1 Λ2 on this interval. Then a test of independence is based on the difference process Zn between estimators of these functions. Under an independent censorship, the empirical estimator of Λ generalizes Nelson-Aalen’s estimator. Tests based on Zn are simulated and compared with other independence tests. In the case of two time intervals between successive failures submitted to a single censoring time, we define a more appropriated estimator of Λ. In both cases, we prove weak convergence of the statistic supt ∣ Zn(t) ∣ associated with triangular sequences of data and derive a bootstrap test having a fixed asymptotic level. These notions are extended to take into account the effect of covariates on the two components and to test independence conditionally on the covariates.
    19 schema:editor Nef5b364773214635b89942a3df14f37f
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N3c59579675a048eb8285c379eeae781a
    24 schema:name A Nonparametric Approach To Dependence For Bivariate Censored Data
    25 schema:pagination 381-392
    26 schema:productId N20ad611a1fb24a029c9f1e55675dd851
    27 Ne9f5a74143104a96a211255f76fbee76
    28 Nf972c0da76c74e2695db5abffcdafad6
    29 schema:publisher N6c22b6dd6a0b4c94a61d48ec799ff988
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046340419
    31 https://doi.org/10.1007/978-94-015-7983-4_23
    32 schema:sdDatePublished 2019-04-15T23:54
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nbc79c06822be45138896b7e3a4ffaad7
    35 schema:url http://link.springer.com/10.1007/978-94-015-7983-4_23
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N15640ad4c5634092b8830522e8658a76 schema:name Biometrie, INRA, 78352 Jouy-en-Josas cedex, France
    40 rdf:type schema:Organization
    41 N20ad611a1fb24a029c9f1e55675dd851 schema:name dimensions_id
    42 schema:value pub.1046340419
    43 rdf:type schema:PropertyValue
    44 N20d40066765643b19901d00ac22fea35 rdf:first sg:person.014426657133.08
    45 rdf:rest N3d393be7768f4a6690c5e61281e801ff
    46 N3c59579675a048eb8285c379eeae781a schema:isbn 978-90-481-4133-3
    47 978-94-015-7983-4
    48 schema:name Survival Analysis: State of the Art
    49 rdf:type schema:Book
    50 N3d393be7768f4a6690c5e61281e801ff rdf:first Nbecf053b1387483a855509f2110281a3
    51 rdf:rest N8bbfe326f5494ddd8542d11948570f17
    52 N50198989e7544688b70692d824459191 schema:name Biometrie, INRA, 78352 Jouy-en-Josas cedex, France
    53 rdf:type schema:Organization
    54 N58ca318246404b0494705f51995152c1 schema:name Biometrie, INRA, 78352 Jouy-en-Josas cedex, France
    55 rdf:type schema:Organization
    56 N6c22b6dd6a0b4c94a61d48ec799ff988 schema:location Dordrecht
    57 schema:name Springer Netherlands
    58 rdf:type schema:Organisation
    59 N730c8b0245984d49963abf0dd16ca6b4 rdf:first N7e3c4ac53f064edb8e4ff5977177dae1
    60 rdf:rest rdf:nil
    61 N7e3c4ac53f064edb8e4ff5977177dae1 schema:familyName Goel
    62 schema:givenName Prem K.
    63 rdf:type schema:Person
    64 N8bbfe326f5494ddd8542d11948570f17 rdf:first sg:person.013270432111.11
    65 rdf:rest rdf:nil
    66 Nac184f83a3704786b16d7fe98a3a2fa6 schema:familyName Klein
    67 schema:givenName John P.
    68 rdf:type schema:Person
    69 Nbc79c06822be45138896b7e3a4ffaad7 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Nbecf053b1387483a855509f2110281a3 schema:affiliation N15640ad4c5634092b8830522e8658a76
    72 schema:familyName Kaddour
    73 schema:givenName A.
    74 rdf:type schema:Person
    75 Ne9f5a74143104a96a211255f76fbee76 schema:name doi
    76 schema:value 10.1007/978-94-015-7983-4_23
    77 rdf:type schema:PropertyValue
    78 Nef5b364773214635b89942a3df14f37f rdf:first Nac184f83a3704786b16d7fe98a3a2fa6
    79 rdf:rest N730c8b0245984d49963abf0dd16ca6b4
    80 Nf972c0da76c74e2695db5abffcdafad6 schema:name readcube_id
    81 schema:value dcbe9db3d612a75139cb463a28f385d904683262454db3eeefe1c4efe6ecbda8
    82 rdf:type schema:PropertyValue
    83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Information and Computing Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Artificial Intelligence and Image Processing
    88 rdf:type schema:DefinedTerm
    89 sg:person.013270432111.11 schema:affiliation N50198989e7544688b70692d824459191
    90 schema:familyName De Turckheim
    91 schema:givenName E.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270432111.11
    93 rdf:type schema:Person
    94 sg:person.014426657133.08 schema:affiliation N58ca318246404b0494705f51995152c1
    95 schema:familyName Pons
    96 schema:givenName O.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426657133.08
    98 rdf:type schema:Person
    99 sg:pub.10.1007/978-1-4612-5254-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039634457
    100 https://doi.org/10.1007/978-1-4612-5254-2
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bfb0099432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032305656
    103 https://doi.org/10.1007/bfb0099432
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1093/biomet/69.2.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419186
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1093/biomet/75.2.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419825
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1214/aos/1176347007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408239
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1214/aos/1176347865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408458
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1214/aos/1176349847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012395133
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1214/aos/1176349853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044437453
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1214/aos/1176349931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408977
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1214/aos/1176351049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409317
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.2307/1402489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069472985
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.2307/2530458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975967
    124 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...