Regular Orbits for the Stadium Billiard View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

J. D. Meiss

ABSTRACT

Though there is a great distinction between the motion of completely chaotic and that of nearly integrable systems, they have in common a set of orbits which one might call the regular orbits. In the nearly integrable case the regular orbits are the invariant tori predicted by the KAM theorem and the periodic orbits which constitute the island chains. In completely chaotic systems the invariant tori are destroyed, but are replaced by invariant cantor sets, called canton. The island chains become resonance zones, which are still delineated by the stable and unstable manifolds of the hyperbolic periodic orbits. More... »

PAGES

145-165

References to SciGraph publications

  • 1986-09. Principles for the design of billiards with nonvanishing Lyapunov exponents in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1985-12. Converse KAM: Theory and practice in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1989. Dynamical Systems of Hyperbolic Type with Singularities in DYNAMICAL SYSTEMS II
  • 1979-10. On the ergodic properties of nowhere dispersing billiards in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1974-07. On ergodic properties of certain billiards in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • Book

    TITLE

    Quantum Chaos — Quantum Measurement

    ISBN

    978-90-481-4120-3
    978-94-015-7979-7

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-015-7979-7_11

    DOI

    http://dx.doi.org/10.1007/978-94-015-7979-7_11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043403710


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Colorado Boulder", 
              "id": "https://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Program in Applied Mathematics, University of Colorado, Boulder, CO\u00a080309-0526, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meiss", 
            "givenName": "J. D.", 
            "id": "sg:person.0643670514.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0167-2789(89)90096-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004612895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(89)90096-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004612895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01197884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007031581", 
              "https://doi.org/10.1007/bf01197884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01197884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007031581", 
              "https://doi.org/10.1007/bf01197884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01205934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012811037", 
              "https://doi.org/10.1007/bf01205934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01205934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012811037", 
              "https://doi.org/10.1007/bf01205934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(87)90343-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017306851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(87)90343-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017306851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(84)90270-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022128735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(84)90270-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022128735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(83)90233-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022919798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(83)90233-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022919798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01209326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023741577", 
              "https://doi.org/10.1007/bf01209326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01209326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023741577", 
              "https://doi.org/10.1007/bf01209326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700001681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034165188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700001681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034165188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(87)90002-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037884875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(87)90002-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037884875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-06788-8_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042950767", 
              "https://doi.org/10.1007/978-3-662-06788-8_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050114564", 
              "https://doi.org/10.1007/bf01075700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700002455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053864707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700002455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053864707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0143-0807/2/2/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059035027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/20/9/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059069403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0951-7715/2/4/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059109579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.42.1189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.42.1189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.51.727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.51.727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.53.1515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.53.1515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790516"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992", 
        "datePublishedReg": "1992-01-01", 
        "description": "Though there is a great distinction between the motion of completely chaotic and that of nearly integrable systems, they have in common a set of orbits which one might call the regular orbits. In the nearly integrable case the regular orbits are the invariant tori predicted by the KAM theorem and the periodic orbits which constitute the island chains. In completely chaotic systems the invariant tori are destroyed, but are replaced by invariant cantor sets, called canton. The island chains become resonance zones, which are still delineated by the stable and unstable manifolds of the hyperbolic periodic orbits.", 
        "editor": [
          {
            "familyName": "Cvitanovi\u0107", 
            "givenName": "P.", 
            "type": "Person"
          }, 
          {
            "familyName": "Percival", 
            "givenName": "I.", 
            "type": "Person"
          }, 
          {
            "familyName": "Wirzba", 
            "givenName": "A.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-015-7979-7_11", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-90-481-4120-3", 
            "978-94-015-7979-7"
          ], 
          "name": "Quantum Chaos \u2014 Quantum Measurement", 
          "type": "Book"
        }, 
        "name": "Regular Orbits for the Stadium Billiard", 
        "pagination": "145-165", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-015-7979-7_11"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cebf7a1163dc68532e8cc55f4b789c0af1b54cbe0cd14f88ce1c7a3d031dcb1c"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043403710"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-015-7979-7_11", 
          "https://app.dimensions.ai/details/publication/pub.1043403710"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000270.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-94-015-7979-7_11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-7979-7_11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-7979-7_11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-7979-7_11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-7979-7_11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-015-7979-7_11 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nc78f7f92faa745a0882d33590cd5cada
    4 schema:citation sg:pub.10.1007/978-3-662-06788-8_8
    5 sg:pub.10.1007/bf01075700
    6 sg:pub.10.1007/bf01197884
    7 sg:pub.10.1007/bf01205934
    8 sg:pub.10.1007/bf01209326
    9 https://doi.org/10.1016/0167-2789(83)90233-6
    10 https://doi.org/10.1016/0167-2789(84)90270-7
    11 https://doi.org/10.1016/0167-2789(87)90002-9
    12 https://doi.org/10.1016/0167-2789(89)90096-1
    13 https://doi.org/10.1016/0375-9601(87)90343-4
    14 https://doi.org/10.1017/s0143385700001681
    15 https://doi.org/10.1017/s0143385700002455
    16 https://doi.org/10.1088/0143-0807/2/2/006
    17 https://doi.org/10.1088/0305-4470/20/9/002
    18 https://doi.org/10.1088/0951-7715/2/4/004
    19 https://doi.org/10.1103/physrevlett.42.1189
    20 https://doi.org/10.1103/physrevlett.51.727
    21 https://doi.org/10.1103/physrevlett.53.1515
    22 schema:datePublished 1992
    23 schema:datePublishedReg 1992-01-01
    24 schema:description Though there is a great distinction between the motion of completely chaotic and that of nearly integrable systems, they have in common a set of orbits which one might call the regular orbits. In the nearly integrable case the regular orbits are the invariant tori predicted by the KAM theorem and the periodic orbits which constitute the island chains. In completely chaotic systems the invariant tori are destroyed, but are replaced by invariant cantor sets, called canton. The island chains become resonance zones, which are still delineated by the stable and unstable manifolds of the hyperbolic periodic orbits.
    25 schema:editor N9a145e9b6af145b28c6dddd0d2f0ed1a
    26 schema:genre chapter
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf Ndd95575cfdf440478b5ddf557dd0ea30
    30 schema:name Regular Orbits for the Stadium Billiard
    31 schema:pagination 145-165
    32 schema:productId N160e4790ee864ba4a6c07014e3ee7d38
    33 Nc8e971178c1249a989281480f18cd916
    34 Nd94ee46c2944483f92ced10b438e1af8
    35 schema:publisher N91c5e48007aa4510b51773989bcc5832
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043403710
    37 https://doi.org/10.1007/978-94-015-7979-7_11
    38 schema:sdDatePublished 2019-04-15T23:54
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Nf762eb868f6149688ca659e680f3df83
    41 schema:url http://link.springer.com/10.1007/978-94-015-7979-7_11
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset chapters
    44 rdf:type schema:Chapter
    45 N160e4790ee864ba4a6c07014e3ee7d38 schema:name dimensions_id
    46 schema:value pub.1043403710
    47 rdf:type schema:PropertyValue
    48 N649d771cdf0d4de0949025760c3cfaa9 schema:familyName Percival
    49 schema:givenName I.
    50 rdf:type schema:Person
    51 N91c5e48007aa4510b51773989bcc5832 schema:location Dordrecht
    52 schema:name Springer Netherlands
    53 rdf:type schema:Organisation
    54 N9a145e9b6af145b28c6dddd0d2f0ed1a rdf:first Nba3e497d3dae4c7d9b65b8ef7ed3afde
    55 rdf:rest Nc803b93ef0f346c8bf03ca760eea3f71
    56 Nba3e497d3dae4c7d9b65b8ef7ed3afde schema:familyName Cvitanović
    57 schema:givenName P.
    58 rdf:type schema:Person
    59 Nc78f7f92faa745a0882d33590cd5cada rdf:first sg:person.0643670514.20
    60 rdf:rest rdf:nil
    61 Nc803b93ef0f346c8bf03ca760eea3f71 rdf:first N649d771cdf0d4de0949025760c3cfaa9
    62 rdf:rest Ndac583b839394497afd82e7f11ec5c22
    63 Nc8e971178c1249a989281480f18cd916 schema:name readcube_id
    64 schema:value cebf7a1163dc68532e8cc55f4b789c0af1b54cbe0cd14f88ce1c7a3d031dcb1c
    65 rdf:type schema:PropertyValue
    66 Nd94ee46c2944483f92ced10b438e1af8 schema:name doi
    67 schema:value 10.1007/978-94-015-7979-7_11
    68 rdf:type schema:PropertyValue
    69 Ndac583b839394497afd82e7f11ec5c22 rdf:first Nfd9ecc379cee4502a8079ac05eec2c72
    70 rdf:rest rdf:nil
    71 Ndd95575cfdf440478b5ddf557dd0ea30 schema:isbn 978-90-481-4120-3
    72 978-94-015-7979-7
    73 schema:name Quantum Chaos — Quantum Measurement
    74 rdf:type schema:Book
    75 Nf762eb868f6149688ca659e680f3df83 schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 Nfd9ecc379cee4502a8079ac05eec2c72 schema:familyName Wirzba
    78 schema:givenName A.
    79 rdf:type schema:Person
    80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Mathematical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Pure Mathematics
    85 rdf:type schema:DefinedTerm
    86 sg:person.0643670514.20 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
    87 schema:familyName Meiss
    88 schema:givenName J. D.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20
    90 rdf:type schema:Person
    91 sg:pub.10.1007/978-3-662-06788-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042950767
    92 https://doi.org/10.1007/978-3-662-06788-8_8
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf01075700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050114564
    95 https://doi.org/10.1007/bf01075700
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf01197884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007031581
    98 https://doi.org/10.1007/bf01197884
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf01205934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012811037
    101 https://doi.org/10.1007/bf01205934
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf01209326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023741577
    104 https://doi.org/10.1007/bf01209326
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/0167-2789(83)90233-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022919798
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/0167-2789(84)90270-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022128735
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/0167-2789(87)90002-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037884875
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/0167-2789(89)90096-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004612895
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0375-9601(87)90343-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017306851
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1017/s0143385700001681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034165188
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1017/s0143385700002455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053864707
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1088/0143-0807/2/2/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059035027
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1088/0305-4470/20/9/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059069403
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1088/0951-7715/2/4/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109579
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1103/physrevlett.42.1189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783526
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1103/physrevlett.51.727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789557
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1103/physrevlett.53.1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790516
    131 rdf:type schema:CreativeWork
    132 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
    133 schema:name Program in Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...