Disjunctive Kriging in Agriculture View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

R. Webster , M. A. Oliver

ABSTRACT

Farmers apply fertilizers, treat their land or livestock with trace elements and apply remedial treatments for salinity on the basis of estimates from soil samples. If the estimates are less than specified thresholds (for plant or animal nutrients) or more (for salt concentration) then farmers are advised to act. Such estimates are subject to error, and farmers should be better equipped to make their decisions and avoid risks if they know the probabilities of deficiency or toxicity. Disjunctive kriging should be valuable in these circumstances, and this paper describes feasibility studies of its application to agriculture. The paper presents variograms of the phosphorus status of an arable farm in eastern England, cobalt deficiency in the soil of southeast Scotland which causes poor health in sheep and cattle there, and salinity in the Jordan Valley of Israel. It maps the estimated concentrations of these in the soil and the conditional probabilities that the true values are less than the recommended minima for phosphorus and cobalt, and exceed the recommended maximum for salinity. More... »

PAGES

421-432

References to SciGraph publications

  • 1976. A Simple Substitute for Conditional Expectation : The Disjunctive Kriging in ADVANCED GEOSTATISTICS IN THE MINING INDUSTRY
  • Book

    TITLE

    Geostatistics

    ISBN

    978-94-015-6846-3
    978-94-015-6844-9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_32

    DOI

    http://dx.doi.org/10.1007/978-94-015-6844-9_32

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021422935


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rothamsted Research", 
              "id": "https://www.grid.ac/institutes/grid.418374.d", 
              "name": [
                "Rothamsted Experimental Station, Harpenden, Hertfordshire, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Webster", 
            "givenName": "R.", 
            "id": "sg:person.01175533525.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175533525.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Geography, The University, Birmingham, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oliver", 
            "givenName": "M. A.", 
            "id": "sg:person.010076772773.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-010-1470-0_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031348717", 
              "https://doi.org/10.1007/978-94-010-1470-0_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/wr022i005p00615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033759352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1986.tb00392.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034300981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jsfa.2740380203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045985715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/agro:19821010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056943276"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1989", 
        "datePublishedReg": "1989-01-01", 
        "description": "Farmers apply fertilizers, treat their land or livestock with trace elements and apply remedial treatments for salinity on the basis of estimates from soil samples. If the estimates are less than specified thresholds (for plant or animal nutrients) or more (for salt concentration) then farmers are advised to act. Such estimates are subject to error, and farmers should be better equipped to make their decisions and avoid risks if they know the probabilities of deficiency or toxicity. Disjunctive kriging should be valuable in these circumstances, and this paper describes feasibility studies of its application to agriculture. The paper presents variograms of the phosphorus status of an arable farm in eastern England, cobalt deficiency in the soil of southeast Scotland which causes poor health in sheep and cattle there, and salinity in the Jordan Valley of Israel. It maps the estimated concentrations of these in the soil and the conditional probabilities that the true values are less than the recommended minima for phosphorus and cobalt, and exceed the recommended maximum for salinity.", 
        "editor": [
          {
            "familyName": "Armstrong", 
            "givenName": "Margaret", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-015-6844-9_32", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-015-6846-3", 
            "978-94-015-6844-9"
          ], 
          "name": "Geostatistics", 
          "type": "Book"
        }, 
        "name": "Disjunctive Kriging in Agriculture", 
        "pagination": "421-432", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-015-6844-9_32"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "66119c323070679a89e69d933ce7a33a0ee6335707e97a9682c4ce468bfac279"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021422935"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-015-6844-9_32", 
          "https://app.dimensions.ai/details/publication/pub.1021422935"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T21:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000256.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-94-015-6844-9_32"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_32'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_32'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_32'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_32'


     

    This table displays all metadata directly associated to this object as RDF triples.

    90 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-015-6844-9_32 schema:about anzsrc-for:05
    2 anzsrc-for:0503
    3 schema:author N5440cffc1a1d42c28e90c7c4e8f9899f
    4 schema:citation sg:pub.10.1007/978-94-010-1470-0_14
    5 https://doi.org/10.1002/jsfa.2740380203
    6 https://doi.org/10.1029/wr022i005p00615
    7 https://doi.org/10.1051/agro:19821010
    8 https://doi.org/10.1111/j.1365-2389.1986.tb00392.x
    9 schema:datePublished 1989
    10 schema:datePublishedReg 1989-01-01
    11 schema:description Farmers apply fertilizers, treat their land or livestock with trace elements and apply remedial treatments for salinity on the basis of estimates from soil samples. If the estimates are less than specified thresholds (for plant or animal nutrients) or more (for salt concentration) then farmers are advised to act. Such estimates are subject to error, and farmers should be better equipped to make their decisions and avoid risks if they know the probabilities of deficiency or toxicity. Disjunctive kriging should be valuable in these circumstances, and this paper describes feasibility studies of its application to agriculture. The paper presents variograms of the phosphorus status of an arable farm in eastern England, cobalt deficiency in the soil of southeast Scotland which causes poor health in sheep and cattle there, and salinity in the Jordan Valley of Israel. It maps the estimated concentrations of these in the soil and the conditional probabilities that the true values are less than the recommended minima for phosphorus and cobalt, and exceed the recommended maximum for salinity.
    12 schema:editor Nfc46368eb0f24fb68270735581c0fd14
    13 schema:genre chapter
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N038e8dfc083e426db58241fb951e628f
    17 schema:name Disjunctive Kriging in Agriculture
    18 schema:pagination 421-432
    19 schema:productId N1f627aa85c81449787d445c1cc35f1a3
    20 N4382c999c7b6419f9770eded491c3741
    21 Nb9969e4f3c0f409dac54a2e6be607a70
    22 schema:publisher Nf103b14a9b8e4b429776ff2533bb9a16
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021422935
    24 https://doi.org/10.1007/978-94-015-6844-9_32
    25 schema:sdDatePublished 2019-04-15T21:01
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N413fb9706ecc43168810dbd58657188f
    28 schema:url http://link.springer.com/10.1007/978-94-015-6844-9_32
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset chapters
    31 rdf:type schema:Chapter
    32 N038e8dfc083e426db58241fb951e628f schema:isbn 978-94-015-6844-9
    33 978-94-015-6846-3
    34 schema:name Geostatistics
    35 rdf:type schema:Book
    36 N11dd2b0f04314ca0a1a153599d044170 rdf:first sg:person.010076772773.20
    37 rdf:rest rdf:nil
    38 N1f627aa85c81449787d445c1cc35f1a3 schema:name dimensions_id
    39 schema:value pub.1021422935
    40 rdf:type schema:PropertyValue
    41 N2a76c0a4721a4c818fd446007bf6b76c schema:name Department of Geography, The University, Birmingham, England
    42 rdf:type schema:Organization
    43 N413fb9706ecc43168810dbd58657188f schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N4382c999c7b6419f9770eded491c3741 schema:name readcube_id
    46 schema:value 66119c323070679a89e69d933ce7a33a0ee6335707e97a9682c4ce468bfac279
    47 rdf:type schema:PropertyValue
    48 N5440cffc1a1d42c28e90c7c4e8f9899f rdf:first sg:person.01175533525.40
    49 rdf:rest N11dd2b0f04314ca0a1a153599d044170
    50 Nb9969e4f3c0f409dac54a2e6be607a70 schema:name doi
    51 schema:value 10.1007/978-94-015-6844-9_32
    52 rdf:type schema:PropertyValue
    53 Nba89ab1ca8d347119c292c1dfd3fca2b schema:familyName Armstrong
    54 schema:givenName Margaret
    55 rdf:type schema:Person
    56 Nf103b14a9b8e4b429776ff2533bb9a16 schema:location Dordrecht
    57 schema:name Springer Netherlands
    58 rdf:type schema:Organisation
    59 Nfc46368eb0f24fb68270735581c0fd14 rdf:first Nba89ab1ca8d347119c292c1dfd3fca2b
    60 rdf:rest rdf:nil
    61 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Environmental Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Soil Sciences
    66 rdf:type schema:DefinedTerm
    67 sg:person.010076772773.20 schema:affiliation N2a76c0a4721a4c818fd446007bf6b76c
    68 schema:familyName Oliver
    69 schema:givenName M. A.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20
    71 rdf:type schema:Person
    72 sg:person.01175533525.40 schema:affiliation https://www.grid.ac/institutes/grid.418374.d
    73 schema:familyName Webster
    74 schema:givenName R.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175533525.40
    76 rdf:type schema:Person
    77 sg:pub.10.1007/978-94-010-1470-0_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031348717
    78 https://doi.org/10.1007/978-94-010-1470-0_14
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1002/jsfa.2740380203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045985715
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1029/wr022i005p00615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033759352
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1051/agro:19821010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056943276
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1111/j.1365-2389.1986.tb00392.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034300981
    87 rdf:type schema:CreativeWork
    88 https://www.grid.ac/institutes/grid.418374.d schema:alternateName Rothamsted Research
    89 schema:name Rothamsted Experimental Station, Harpenden, Hertfordshire, England
    90 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...