Geostatistically Constrained Multivariate Classification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

M. A. Oliver , R. Webster

ABSTRACT

This paper describes procedures for grouping sampling sites that are both similar with respect to their properties and near to one another geographically. The aim is to avoid undue fragmentation arising from sampling fluctuations or to create reasonably sized, homogeneous regions to simplify management, or both. This is achieved by using the variogram in two ways to define the degree of constraint imposed. It is used indirectly to determine the spatial extent of classes when segmenting transects and explicitly to compute the dissimilarities between sites for constraining classification in two-dimensions. Both uses are illustrated with examples from one- and two-dimensional soil surveys. The geostatistically constrained spatially weighted method is novel, and the results show that constraint can be applied rationally to decrease undesirable fragmentation. More... »

PAGES

383-395

References to SciGraph publications

  • 1973-03. Automatic soil-boundary location from transect data in MATHEMATICAL GEOSCIENCES
  • 1974-09. Zonation of multivariate sequences of digitized geologic data in MATHEMATICAL GEOSCIENCES
  • 1982-12. Clustering with relational constraint in PSYCHOMETRIKA
  • Book

    TITLE

    Geostatistics

    ISBN

    978-94-015-6846-3
    978-94-015-6844-9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_29

    DOI

    http://dx.doi.org/10.1007/978-94-015-6844-9_29

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006659331


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Science and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Geography, The University, Birmingham, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oliver", 
            "givenName": "M. A.", 
            "id": "sg:person.010076772773.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rothamsted Research", 
              "id": "https://www.grid.ac/institutes/grid.418374.d", 
              "name": [
                "Rothamsted Experimental Station, Hertfordshire, Harpenden, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Webster", 
            "givenName": "R.", 
            "id": "sg:person.01175533525.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175533525.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02293706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001739880", 
              "https://doi.org/10.1007/bf02293706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(83)90024-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005942739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(83)90024-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005942739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02114085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012409705", 
              "https://doi.org/10.1007/bf02114085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02114085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012409705", 
              "https://doi.org/10.1007/bf02114085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02082892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021461993", 
              "https://doi.org/10.1007/bf02082892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02082892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021461993", 
              "https://doi.org/10.1007/bf02082892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1987.tb02146.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022690023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1972.tb01655.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026778953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1978.tb00789.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028953043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09595236800185071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058350733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2528592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069974358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2528823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069974562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/622300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070662391"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1989", 
        "datePublishedReg": "1989-01-01", 
        "description": "This paper describes procedures for grouping sampling sites that are both similar with respect to their properties and near to one another geographically. The aim is to avoid undue fragmentation arising from sampling fluctuations or to create reasonably sized, homogeneous regions to simplify management, or both. This is achieved by using the variogram in two ways to define the degree of constraint imposed. It is used indirectly to determine the spatial extent of classes when segmenting transects and explicitly to compute the dissimilarities between sites for constraining classification in two-dimensions. Both uses are illustrated with examples from one- and two-dimensional soil surveys. The geostatistically constrained spatially weighted method is novel, and the results show that constraint can be applied rationally to decrease undesirable fragmentation.", 
        "editor": [
          {
            "familyName": "Armstrong", 
            "givenName": "Margaret", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-015-6844-9_29", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-015-6846-3", 
            "978-94-015-6844-9"
          ], 
          "name": "Geostatistics", 
          "type": "Book"
        }, 
        "name": "Geostatistically Constrained Multivariate Classification", 
        "pagination": "383-395", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-015-6844-9_29"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1fb84568c77640b8d3d4e374d2fd385a211425b77614abe2ef814ac06f5ec48d"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006659331"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-015-6844-9_29", 
          "https://app.dimensions.ai/details/publication/pub.1006659331"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000247.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-94-015-6844-9_29"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_29'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_29'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_29'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-6844-9_29'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-015-6844-9_29 schema:about anzsrc-for:05
    2 anzsrc-for:0502
    3 schema:author N0e1cf4fcc6ac403cabf568a443a5c47c
    4 schema:citation sg:pub.10.1007/bf02082892
    5 sg:pub.10.1007/bf02114085
    6 sg:pub.10.1007/bf02293706
    7 https://doi.org/10.1016/0031-3203(83)90024-9
    8 https://doi.org/10.1080/09595236800185071
    9 https://doi.org/10.1111/j.1365-2389.1972.tb01655.x
    10 https://doi.org/10.1111/j.1365-2389.1978.tb00789.x
    11 https://doi.org/10.1111/j.1365-2389.1987.tb02146.x
    12 https://doi.org/10.2307/2528592
    13 https://doi.org/10.2307/2528823
    14 https://doi.org/10.2307/622300
    15 schema:datePublished 1989
    16 schema:datePublishedReg 1989-01-01
    17 schema:description This paper describes procedures for grouping sampling sites that are both similar with respect to their properties and near to one another geographically. The aim is to avoid undue fragmentation arising from sampling fluctuations or to create reasonably sized, homogeneous regions to simplify management, or both. This is achieved by using the variogram in two ways to define the degree of constraint imposed. It is used indirectly to determine the spatial extent of classes when segmenting transects and explicitly to compute the dissimilarities between sites for constraining classification in two-dimensions. Both uses are illustrated with examples from one- and two-dimensional soil surveys. The geostatistically constrained spatially weighted method is novel, and the results show that constraint can be applied rationally to decrease undesirable fragmentation.
    18 schema:editor Nd59a12fc2b3940729b2f67fcc26bbad1
    19 schema:genre chapter
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N89d105cbc05b4cd7a41391f245b02ef5
    23 schema:name Geostatistically Constrained Multivariate Classification
    24 schema:pagination 383-395
    25 schema:productId N0c354aeb851842d691a337eeec2b3d6d
    26 N185009b2cc39425caadcda543f5a825c
    27 N9957a5a6388d434197f742dcf41d59af
    28 schema:publisher Nceeb0bde12d043349b832c73158bc730
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006659331
    30 https://doi.org/10.1007/978-94-015-6844-9_29
    31 schema:sdDatePublished 2019-04-15T23:50
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N4109838e2c73476ca4cda5143e14d8ed
    34 schema:url http://link.springer.com/10.1007/978-94-015-6844-9_29
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset chapters
    37 rdf:type schema:Chapter
    38 N0c354aeb851842d691a337eeec2b3d6d schema:name dimensions_id
    39 schema:value pub.1006659331
    40 rdf:type schema:PropertyValue
    41 N0e1cf4fcc6ac403cabf568a443a5c47c rdf:first sg:person.010076772773.20
    42 rdf:rest Ne341ee156b1c4f698e7df173e4b2ce74
    43 N185009b2cc39425caadcda543f5a825c schema:name readcube_id
    44 schema:value 1fb84568c77640b8d3d4e374d2fd385a211425b77614abe2ef814ac06f5ec48d
    45 rdf:type schema:PropertyValue
    46 N1bb16c2224dc410a8a7728b13a8dce8d schema:name Department of Geography, The University, Birmingham, England
    47 rdf:type schema:Organization
    48 N4109838e2c73476ca4cda5143e14d8ed schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N6fb23ef09f9246e3b5626c6a05da211d schema:familyName Armstrong
    51 schema:givenName Margaret
    52 rdf:type schema:Person
    53 N89d105cbc05b4cd7a41391f245b02ef5 schema:isbn 978-94-015-6844-9
    54 978-94-015-6846-3
    55 schema:name Geostatistics
    56 rdf:type schema:Book
    57 N9957a5a6388d434197f742dcf41d59af schema:name doi
    58 schema:value 10.1007/978-94-015-6844-9_29
    59 rdf:type schema:PropertyValue
    60 Nceeb0bde12d043349b832c73158bc730 schema:location Dordrecht
    61 schema:name Springer Netherlands
    62 rdf:type schema:Organisation
    63 Nd59a12fc2b3940729b2f67fcc26bbad1 rdf:first N6fb23ef09f9246e3b5626c6a05da211d
    64 rdf:rest rdf:nil
    65 Ne341ee156b1c4f698e7df173e4b2ce74 rdf:first sg:person.01175533525.40
    66 rdf:rest rdf:nil
    67 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Environmental Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Environmental Science and Management
    72 rdf:type schema:DefinedTerm
    73 sg:person.010076772773.20 schema:affiliation N1bb16c2224dc410a8a7728b13a8dce8d
    74 schema:familyName Oliver
    75 schema:givenName M. A.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20
    77 rdf:type schema:Person
    78 sg:person.01175533525.40 schema:affiliation https://www.grid.ac/institutes/grid.418374.d
    79 schema:familyName Webster
    80 schema:givenName R.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175533525.40
    82 rdf:type schema:Person
    83 sg:pub.10.1007/bf02082892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021461993
    84 https://doi.org/10.1007/bf02082892
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf02114085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012409705
    87 https://doi.org/10.1007/bf02114085
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf02293706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001739880
    90 https://doi.org/10.1007/bf02293706
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/0031-3203(83)90024-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005942739
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1080/09595236800185071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058350733
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1111/j.1365-2389.1972.tb01655.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026778953
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1111/j.1365-2389.1978.tb00789.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028953043
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1111/j.1365-2389.1987.tb02146.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690023
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.2307/2528592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974358
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.2307/2528823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974562
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.2307/622300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070662391
    107 rdf:type schema:CreativeWork
    108 https://www.grid.ac/institutes/grid.418374.d schema:alternateName Rothamsted Research
    109 schema:name Rothamsted Experimental Station, Hertfordshire, Harpenden, England
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...