Efficient Classical Simulation of Continuous Variable Quantum Information Processes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002

AUTHORS

Stephen D. Bartlett , Barry C. Sanders , Samuel L. Braunstein , Kae Nemoto

ABSTRACT

We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer. More... »

PAGES

47-55

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6

DOI

http://dx.doi.org/10.1007/978-94-015-1258-9_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042782706


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1004.5", 
          "name": [
            "Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartlett", 
        "givenName": "Stephen D.", 
        "id": "sg:person.0642111533.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642111533.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1004.5", 
          "name": [
            "Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanders", 
        "givenName": "Barry C.", 
        "id": "sg:person.01114760123.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114760123.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Informatics, Bangor University, LL57 1UT, Bangor, UK", 
          "id": "http://www.grid.ac/institutes/grid.7362.0", 
          "name": [
            "Informatics, Bangor University, LL57 1UT, Bangor, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "id": "sg:person.0666766367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Informatics, Bangor University, LL57 1UT, Bangor, UK", 
          "id": "http://www.grid.ac/institutes/grid.7362.0", 
          "name": [
            "Informatics, Bangor University, LL57 1UT, Bangor, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nemoto", 
        "givenName": "Kae", 
        "id": "sg:person.01270664574.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270664574.60"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer.", 
    "editor": [
      {
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pati", 
        "givenName": "Arun K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-015-1258-9_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-90-481-6255-0", 
        "978-94-015-1258-9"
      ], 
      "name": "Quantum Information with Continuous Variables", 
      "type": "Book"
    }, 
    "keywords": [
      "classical computers", 
      "continuous variable quantum information", 
      "quantum information processes", 
      "efficient classical simulation", 
      "Gottesman-Knill theorem", 
      "quantum information", 
      "quantum processes", 
      "classical simulations", 
      "quantum algorithms", 
      "Gaussian states", 
      "harmonic oscillator", 
      "canonical operator", 
      "efficient simulation", 
      "information processes", 
      "computer", 
      "suitable operation", 
      "algorithm", 
      "operators", 
      "measurements", 
      "Hamiltonian", 
      "simulations", 
      "oscillator", 
      "information", 
      "operation", 
      "process", 
      "collection", 
      "extension", 
      "state", 
      "sufficient conditions", 
      "theorem", 
      "transformation", 
      "conditions", 
      "continuous variable quantum algorithm", 
      "variable quantum algorithm", 
      "variable quantum information", 
      "unentangled Gaussian states", 
      "Continuous Variable Quantum Information Processes", 
      "Variable Quantum Information Processes"
    ], 
    "name": "Efficient Classical Simulation of Continuous Variable Quantum Information Processes", 
    "pagination": "47-55", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042782706"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-015-1258-9_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-015-1258-9_6", 
      "https://app.dimensions.ai/details/publication/pub.1042782706"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_334.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-015-1258-9_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-015-1258-9_6 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N3e2a05e39a2245d18445d04cb9d7b17c
4 schema:datePublished 2002
5 schema:datePublishedReg 2002-01-01
6 schema:description We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer.
7 schema:editor N9837f82b65474cbc83c05c6febff4704
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N2edc92214c564a43a93099ce5e0becf9
12 schema:keywords Continuous Variable Quantum Information Processes
13 Gaussian states
14 Gottesman-Knill theorem
15 Hamiltonian
16 Variable Quantum Information Processes
17 algorithm
18 canonical operator
19 classical computers
20 classical simulations
21 collection
22 computer
23 conditions
24 continuous variable quantum algorithm
25 continuous variable quantum information
26 efficient classical simulation
27 efficient simulation
28 extension
29 harmonic oscillator
30 information
31 information processes
32 measurements
33 operation
34 operators
35 oscillator
36 process
37 quantum algorithms
38 quantum information
39 quantum information processes
40 quantum processes
41 simulations
42 state
43 sufficient conditions
44 suitable operation
45 theorem
46 transformation
47 unentangled Gaussian states
48 variable quantum algorithm
49 variable quantum information
50 schema:name Efficient Classical Simulation of Continuous Variable Quantum Information Processes
51 schema:pagination 47-55
52 schema:productId N5029cc1441fa4b2e81ce7a78e8b1b42f
53 N8182bbd7ea1a4d519d1755d2b51470f4
54 schema:publisher N0178a7ce82ee46a494cfd1fc2341e8e4
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042782706
56 https://doi.org/10.1007/978-94-015-1258-9_6
57 schema:sdDatePublished 2021-11-01T18:56
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nadb2dde5b8374e3d8d3b32767c6f1cc7
60 schema:url https://doi.org/10.1007/978-94-015-1258-9_6
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N0178a7ce82ee46a494cfd1fc2341e8e4 schema:name Springer Nature
65 rdf:type schema:Organisation
66 N2b9771295dab496bb69254453ff96e6b rdf:first sg:person.01270664574.60
67 rdf:rest rdf:nil
68 N2edc92214c564a43a93099ce5e0becf9 schema:isbn 978-90-481-6255-0
69 978-94-015-1258-9
70 schema:name Quantum Information with Continuous Variables
71 rdf:type schema:Book
72 N3ae74219e7a14793b9f81385f279bec2 rdf:first sg:person.0666766367.22
73 rdf:rest N2b9771295dab496bb69254453ff96e6b
74 N3e2a05e39a2245d18445d04cb9d7b17c rdf:first sg:person.0642111533.53
75 rdf:rest N7c41b5fe0f234b8d87750cd701b5ecbc
76 N5029cc1441fa4b2e81ce7a78e8b1b42f schema:name dimensions_id
77 schema:value pub.1042782706
78 rdf:type schema:PropertyValue
79 N568d34bf382d48ae9fcf4564e7155e5a schema:familyName Braunstein
80 schema:givenName Samuel L.
81 rdf:type schema:Person
82 N5ea206ace6d44a85822da54797125799 rdf:first Na9af724362bb46e488fc0d1bfbad5731
83 rdf:rest rdf:nil
84 N7c41b5fe0f234b8d87750cd701b5ecbc rdf:first sg:person.01114760123.29
85 rdf:rest N3ae74219e7a14793b9f81385f279bec2
86 N8182bbd7ea1a4d519d1755d2b51470f4 schema:name doi
87 schema:value 10.1007/978-94-015-1258-9_6
88 rdf:type schema:PropertyValue
89 N9837f82b65474cbc83c05c6febff4704 rdf:first N568d34bf382d48ae9fcf4564e7155e5a
90 rdf:rest N5ea206ace6d44a85822da54797125799
91 Na9af724362bb46e488fc0d1bfbad5731 schema:familyName Pati
92 schema:givenName Arun K.
93 rdf:type schema:Person
94 Nadb2dde5b8374e3d8d3b32767c6f1cc7 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
100 schema:name Quantum Physics
101 rdf:type schema:DefinedTerm
102 sg:person.01114760123.29 schema:affiliation grid-institutes:grid.1004.5
103 schema:familyName Sanders
104 schema:givenName Barry C.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114760123.29
106 rdf:type schema:Person
107 sg:person.01270664574.60 schema:affiliation grid-institutes:grid.7362.0
108 schema:familyName Nemoto
109 schema:givenName Kae
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270664574.60
111 rdf:type schema:Person
112 sg:person.0642111533.53 schema:affiliation grid-institutes:grid.1004.5
113 schema:familyName Bartlett
114 schema:givenName Stephen D.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642111533.53
116 rdf:type schema:Person
117 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.7362.0
118 schema:familyName Braunstein
119 schema:givenName Samuel L.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
121 rdf:type schema:Person
122 grid-institutes:grid.1004.5 schema:alternateName Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia
123 schema:name Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia
124 rdf:type schema:Organization
125 grid-institutes:grid.7362.0 schema:alternateName Informatics, Bangor University, LL57 1UT, Bangor, UK
126 schema:name Informatics, Bangor University, LL57 1UT, Bangor, UK
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...