Efficient Classical Simulation of Continuous Variable Quantum Information Processes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002

AUTHORS

Stephen D. Bartlett , Barry C. Sanders , Samuel L. Braunstein , Kae Nemoto

ABSTRACT

We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer. More... »

PAGES

47-55

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6

DOI

http://dx.doi.org/10.1007/978-94-015-1258-9_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042782706


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1004.5", 
          "name": [
            "Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartlett", 
        "givenName": "Stephen D.", 
        "id": "sg:person.0642111533.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642111533.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1004.5", 
          "name": [
            "Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanders", 
        "givenName": "Barry C.", 
        "id": "sg:person.01114760123.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114760123.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Informatics, Bangor University, LL57 1UT, Bangor, UK", 
          "id": "http://www.grid.ac/institutes/grid.7362.0", 
          "name": [
            "Informatics, Bangor University, LL57 1UT, Bangor, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "id": "sg:person.0666766367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Informatics, Bangor University, LL57 1UT, Bangor, UK", 
          "id": "http://www.grid.ac/institutes/grid.7362.0", 
          "name": [
            "Informatics, Bangor University, LL57 1UT, Bangor, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nemoto", 
        "givenName": "Kae", 
        "id": "sg:person.01270664574.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270664574.60"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer.", 
    "editor": [
      {
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pati", 
        "givenName": "Arun K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-015-1258-9_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-90-481-6255-0", 
        "978-94-015-1258-9"
      ], 
      "name": "Quantum Information with Continuous Variables", 
      "type": "Book"
    }, 
    "keywords": [
      "classical computers", 
      "continuous variable quantum information", 
      "quantum information processes", 
      "efficient classical simulation", 
      "Gottesman-Knill theorem", 
      "quantum information", 
      "quantum processes", 
      "classical simulations", 
      "quantum algorithms", 
      "Gaussian states", 
      "harmonic oscillator", 
      "canonical operator", 
      "efficient simulation", 
      "information processes", 
      "computer", 
      "suitable operation", 
      "algorithm", 
      "operators", 
      "measurements", 
      "Hamiltonian", 
      "simulations", 
      "oscillator", 
      "information", 
      "operation", 
      "process", 
      "collection", 
      "extension", 
      "state", 
      "sufficient conditions", 
      "theorem", 
      "transformation", 
      "conditions", 
      "continuous variable quantum algorithm", 
      "variable quantum algorithm", 
      "variable quantum information", 
      "unentangled Gaussian states", 
      "Continuous Variable Quantum Information Processes", 
      "Variable Quantum Information Processes"
    ], 
    "name": "Efficient Classical Simulation of Continuous Variable Quantum Information Processes", 
    "pagination": "47-55", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042782706"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-015-1258-9_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-015-1258-9_6", 
      "https://app.dimensions.ai/details/publication/pub.1042782706"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_68.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-015-1258-9_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_6'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-015-1258-9_6 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N2e34398e5c9049c4834becccb60cfd24
4 schema:datePublished 2002
5 schema:datePublishedReg 2002-01-01
6 schema:description We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer.
7 schema:editor N4a59578452ba4020b11ee29c078c9977
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nb420a68777f74425b3aa26c62d0cd86b
12 schema:keywords Continuous Variable Quantum Information Processes
13 Gaussian states
14 Gottesman-Knill theorem
15 Hamiltonian
16 Variable Quantum Information Processes
17 algorithm
18 canonical operator
19 classical computers
20 classical simulations
21 collection
22 computer
23 conditions
24 continuous variable quantum algorithm
25 continuous variable quantum information
26 efficient classical simulation
27 efficient simulation
28 extension
29 harmonic oscillator
30 information
31 information processes
32 measurements
33 operation
34 operators
35 oscillator
36 process
37 quantum algorithms
38 quantum information
39 quantum information processes
40 quantum processes
41 simulations
42 state
43 sufficient conditions
44 suitable operation
45 theorem
46 transformation
47 unentangled Gaussian states
48 variable quantum algorithm
49 variable quantum information
50 schema:name Efficient Classical Simulation of Continuous Variable Quantum Information Processes
51 schema:pagination 47-55
52 schema:productId N1bca4f9c23f745a08257b75a5b38816d
53 N36b5ca1f57b74510a294e5f534404621
54 schema:publisher Nb8ec5e4e718e41b48fe482ad1c2692aa
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042782706
56 https://doi.org/10.1007/978-94-015-1258-9_6
57 schema:sdDatePublished 2022-01-01T19:27
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N0910fc83db404578af5e092b1deb8e3e
60 schema:url https://doi.org/10.1007/978-94-015-1258-9_6
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N0910fc83db404578af5e092b1deb8e3e schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N1bca4f9c23f745a08257b75a5b38816d schema:name dimensions_id
67 schema:value pub.1042782706
68 rdf:type schema:PropertyValue
69 N2e34398e5c9049c4834becccb60cfd24 rdf:first sg:person.0642111533.53
70 rdf:rest Nde94b989373e4e7b8e559115df8da496
71 N36b5ca1f57b74510a294e5f534404621 schema:name doi
72 schema:value 10.1007/978-94-015-1258-9_6
73 rdf:type schema:PropertyValue
74 N4a59578452ba4020b11ee29c078c9977 rdf:first N91969b615fe242b4b5a80be614d3c5e9
75 rdf:rest N780124953a2647afafe04e9dda7c453f
76 N7505d1e8c35249588f47894072d414ad rdf:first sg:person.01270664574.60
77 rdf:rest rdf:nil
78 N780124953a2647afafe04e9dda7c453f rdf:first N9b5e32e656214550a944b51973b05980
79 rdf:rest rdf:nil
80 N91969b615fe242b4b5a80be614d3c5e9 schema:familyName Braunstein
81 schema:givenName Samuel L.
82 rdf:type schema:Person
83 N9b5e32e656214550a944b51973b05980 schema:familyName Pati
84 schema:givenName Arun K.
85 rdf:type schema:Person
86 N9f7b28ad94104c10a730195f1e9b269d rdf:first sg:person.0666766367.22
87 rdf:rest N7505d1e8c35249588f47894072d414ad
88 Nb420a68777f74425b3aa26c62d0cd86b schema:isbn 978-90-481-6255-0
89 978-94-015-1258-9
90 schema:name Quantum Information with Continuous Variables
91 rdf:type schema:Book
92 Nb8ec5e4e718e41b48fe482ad1c2692aa schema:name Springer Nature
93 rdf:type schema:Organisation
94 Nde94b989373e4e7b8e559115df8da496 rdf:first sg:person.01114760123.29
95 rdf:rest N9f7b28ad94104c10a730195f1e9b269d
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
100 schema:name Quantum Physics
101 rdf:type schema:DefinedTerm
102 sg:person.01114760123.29 schema:affiliation grid-institutes:grid.1004.5
103 schema:familyName Sanders
104 schema:givenName Barry C.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114760123.29
106 rdf:type schema:Person
107 sg:person.01270664574.60 schema:affiliation grid-institutes:grid.7362.0
108 schema:familyName Nemoto
109 schema:givenName Kae
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270664574.60
111 rdf:type schema:Person
112 sg:person.0642111533.53 schema:affiliation grid-institutes:grid.1004.5
113 schema:familyName Bartlett
114 schema:givenName Stephen D.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642111533.53
116 rdf:type schema:Person
117 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.7362.0
118 schema:familyName Braunstein
119 schema:givenName Samuel L.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
121 rdf:type schema:Person
122 grid-institutes:grid.1004.5 schema:alternateName Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia
123 schema:name Department of Physics and Centre for Advanced Computing -Algorithms and Cryptography, Macquarie University, 2109, Sydney, New South Wales, Australia
124 rdf:type schema:Organization
125 grid-institutes:grid.7362.0 schema:alternateName Informatics, Bangor University, LL57 1UT, Bangor, UK
126 schema:name Informatics, Bangor University, LL57 1UT, Bangor, UK
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...