Deutsch-Jozsa Algorithm for Continuous Variables View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

Arun K. Pati , Samuel L. Braunstein

ABSTRACT

We present an idealized quantum continuous variable analog of the Deutsch-Jozsa algorithm which can be implemented on a perfect continuous variable quantum computer. Using the Fourier transformation and XOR gate appropriate for continuous spectra we show that under ideal operation to infinite precision that there is an infinite reduction in number of query calls in this scheme. More... »

PAGES

31-36

Book

TITLE

Quantum Information with Continuous Variables

ISBN

978-90-481-6255-0
978-94-015-1258-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_4

DOI

http://dx.doi.org/10.1007/978-94-015-1258-9_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016600216


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Theoretical Physics Division, BARC, Mumbai, India", 
          "id": "http://www.grid.ac/institutes/grid.418304.a", 
          "name": [
            "Institute of Physics, 751005, Bhubaneswar, Orissa, India", 
            "Theoretical Physics Division, BARC, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pati", 
        "givenName": "Arun K.", 
        "id": "sg:person.016624756353.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624756353.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Informatics, Bangor University, LL57 1UT, Bangor, UK", 
          "id": "http://www.grid.ac/institutes/grid.7362.0", 
          "name": [
            "Informatics, Bangor University, LL57 1UT, Bangor, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "id": "sg:person.0666766367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "We present an idealized quantum continuous variable analog of the Deutsch-Jozsa algorithm which can be implemented on a perfect continuous variable quantum computer. Using the Fourier transformation and XOR gate appropriate for continuous spectra we show that under ideal operation to infinite precision that there is an infinite reduction in number of query calls in this scheme.", 
    "editor": [
      {
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pati", 
        "givenName": "Arun K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-015-1258-9_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-90-481-6255-0", 
        "978-94-015-1258-9"
      ], 
      "name": "Quantum Information with Continuous Variables", 
      "type": "Book"
    }, 
    "keywords": [
      "Deutsch-Jozsa algorithm", 
      "quantum computer", 
      "continuous spectrum", 
      "Fourier transformation", 
      "variable analogue", 
      "XOR gate", 
      "ideal operation", 
      "spectra", 
      "gate", 
      "precision", 
      "scheme", 
      "operation", 
      "continuous variables", 
      "analogues", 
      "computer", 
      "transformation", 
      "number", 
      "reduction", 
      "algorithm", 
      "variables", 
      "calls", 
      "infinite reduction", 
      "idealized quantum continuous variable analog", 
      "quantum continuous variable analog", 
      "continuous variable analog", 
      "perfect continuous variable quantum computer", 
      "continuous variable quantum computer", 
      "variable quantum computer", 
      "query calls"
    ], 
    "name": "Deutsch-Jozsa Algorithm for Continuous Variables", 
    "pagination": "31-36", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016600216"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-015-1258-9_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-015-1258-9_4", 
      "https://app.dimensions.ai/details/publication/pub.1016600216"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_392.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-015-1258-9_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_4'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      55 URIs      48 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-015-1258-9_4 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N85ce824d402c443fb66df1e87f280522
4 schema:datePublished 2003
5 schema:datePublishedReg 2003-01-01
6 schema:description We present an idealized quantum continuous variable analog of the Deutsch-Jozsa algorithm which can be implemented on a perfect continuous variable quantum computer. Using the Fourier transformation and XOR gate appropriate for continuous spectra we show that under ideal operation to infinite precision that there is an infinite reduction in number of query calls in this scheme.
7 schema:editor Nd913a65292e44554927a004aba584507
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N4ad4d71ecfc644ac8bbfa233faeb3959
12 schema:keywords Deutsch-Jozsa algorithm
13 Fourier transformation
14 XOR gate
15 algorithm
16 analogues
17 calls
18 computer
19 continuous spectrum
20 continuous variable analog
21 continuous variable quantum computer
22 continuous variables
23 gate
24 ideal operation
25 idealized quantum continuous variable analog
26 infinite reduction
27 number
28 operation
29 perfect continuous variable quantum computer
30 precision
31 quantum computer
32 quantum continuous variable analog
33 query calls
34 reduction
35 scheme
36 spectra
37 transformation
38 variable analogue
39 variable quantum computer
40 variables
41 schema:name Deutsch-Jozsa Algorithm for Continuous Variables
42 schema:pagination 31-36
43 schema:productId Nc8359f99e8f041cbaedcbc72047e606c
44 Ncbcaba4fe70146a3a32b01444a6ee94a
45 schema:publisher N7402bc4049c44832b498780c798b0327
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016600216
47 https://doi.org/10.1007/978-94-015-1258-9_4
48 schema:sdDatePublished 2021-12-01T20:08
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N4d1b645af2834b14a9e1f8299bdd36e9
51 schema:url https://doi.org/10.1007/978-94-015-1258-9_4
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N2fb240461cbd4b09bbbb19fe9467e5ed schema:familyName Pati
56 schema:givenName Arun K.
57 rdf:type schema:Person
58 N4ad4d71ecfc644ac8bbfa233faeb3959 schema:isbn 978-90-481-6255-0
59 978-94-015-1258-9
60 schema:name Quantum Information with Continuous Variables
61 rdf:type schema:Book
62 N4d1b645af2834b14a9e1f8299bdd36e9 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N7402bc4049c44832b498780c798b0327 schema:name Springer Nature
65 rdf:type schema:Organisation
66 N7e161562088840729410efa34eeb33ed rdf:first sg:person.0666766367.22
67 rdf:rest rdf:nil
68 N85ce824d402c443fb66df1e87f280522 rdf:first sg:person.016624756353.35
69 rdf:rest N7e161562088840729410efa34eeb33ed
70 Nb68207fa51844fb5bbff7dca0a4b9795 schema:familyName Braunstein
71 schema:givenName Samuel L.
72 rdf:type schema:Person
73 Nb92a498a1ad74f24a6ff9ebef69cfc52 rdf:first N2fb240461cbd4b09bbbb19fe9467e5ed
74 rdf:rest rdf:nil
75 Nc8359f99e8f041cbaedcbc72047e606c schema:name dimensions_id
76 schema:value pub.1016600216
77 rdf:type schema:PropertyValue
78 Ncbcaba4fe70146a3a32b01444a6ee94a schema:name doi
79 schema:value 10.1007/978-94-015-1258-9_4
80 rdf:type schema:PropertyValue
81 Nd913a65292e44554927a004aba584507 rdf:first Nb68207fa51844fb5bbff7dca0a4b9795
82 rdf:rest Nb92a498a1ad74f24a6ff9ebef69cfc52
83 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
87 schema:name Quantum Physics
88 rdf:type schema:DefinedTerm
89 sg:person.016624756353.35 schema:affiliation grid-institutes:grid.418304.a
90 schema:familyName Pati
91 schema:givenName Arun K.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624756353.35
93 rdf:type schema:Person
94 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.7362.0
95 schema:familyName Braunstein
96 schema:givenName Samuel L.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
98 rdf:type schema:Person
99 grid-institutes:grid.418304.a schema:alternateName Theoretical Physics Division, BARC, Mumbai, India
100 schema:name Institute of Physics, 751005, Bhubaneswar, Orissa, India
101 Theoretical Physics Division, BARC, Mumbai, India
102 rdf:type schema:Organization
103 grid-institutes:grid.7362.0 schema:alternateName Informatics, Bangor University, LL57 1UT, Bangor, UK
104 schema:name Informatics, Bangor University, LL57 1UT, Bangor, UK
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...