Multipartite Entanglement for Continuous Variables View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Peter van Loock , Samuel L. Braunstein

ABSTRACT

First, we show how the quantum circuits for generating and measuring multi-party entanglement of qubits can be translated to continuous quantum variables. We derive sufficient inseparability criteria for N-party continuous-variable states and discuss their applicability. Then, we consider a family of multipartite entangled states (multi-party multi-mode states with one mode per party) described by continuous quantum variables and analyze their properties. These states can be efficiently generated using squeezed light and linear optics. More... »

PAGES

111-143

Book

TITLE

Quantum Information with Continuous Variables

ISBN

978-90-481-6255-0
978-94-015-1258-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_12

DOI

http://dx.doi.org/10.1007/978-94-015-1258-9_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037727157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zentrum f\u00fcr Moderne Optik, Universit\u00e4t Erlangen-N\u00fcrnberg, 91058, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Zentrum f\u00fcr Moderne Optik, Universit\u00e4t Erlangen-N\u00fcrnberg, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Loock", 
        "givenName": "Peter", 
        "id": "sg:person.0703372700.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703372700.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Informatics, Bangor University, LL57 1UT, Bangor, UK", 
          "id": "http://www.grid.ac/institutes/grid.7362.0", 
          "name": [
            "Informatics, Bangor University, LL57 1UT, Bangor, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "id": "sg:person.0666766367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "First, we show how the quantum circuits for generating and measuring multi-party entanglement of qubits can be translated to continuous quantum variables. We derive sufficient inseparability criteria for N-party continuous-variable states and discuss their applicability. Then, we consider a family of multipartite entangled states (multi-party multi-mode states with one mode per party) described by continuous quantum variables and analyze their properties. These states can be efficiently generated using squeezed light and linear optics.", 
    "editor": [
      {
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pati", 
        "givenName": "Arun K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-015-1258-9_12", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-6255-0", 
        "978-94-015-1258-9"
      ], 
      "name": "Quantum Information with Continuous Variables", 
      "type": "Book"
    }, 
    "keywords": [
      "continuous quantum variables", 
      "quantum variables", 
      "multi-party entanglement", 
      "continuous-variable states", 
      "sufficient inseparability criterion", 
      "linear optics", 
      "inseparability criterion", 
      "multipartite entanglement", 
      "entanglement", 
      "quantum", 
      "qubits", 
      "optics", 
      "multipartite", 
      "state", 
      "properties", 
      "applicability", 
      "continuous variables", 
      "variables", 
      "criteria", 
      "family", 
      "party continuous-variable states", 
      "family of multipartite"
    ], 
    "name": "Multipartite Entanglement for Continuous Variables", 
    "pagination": "111-143", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037727157"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-015-1258-9_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-015-1258-9_12", 
      "https://app.dimensions.ai/details/publication/pub.1037727157"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_210.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-015-1258-9_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_12'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      23 PREDICATES      48 URIs      41 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-015-1258-9_12 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N2192cc11307f46e894b6447b639925db
4 schema:datePublished 2003
5 schema:datePublishedReg 2003-01-01
6 schema:description First, we show how the quantum circuits for generating and measuring multi-party entanglement of qubits can be translated to continuous quantum variables. We derive sufficient inseparability criteria for N-party continuous-variable states and discuss their applicability. Then, we consider a family of multipartite entangled states (multi-party multi-mode states with one mode per party) described by continuous quantum variables and analyze their properties. These states can be efficiently generated using squeezed light and linear optics.
7 schema:editor Nc597890f37d147398ae8d73443642216
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc3527cbde0234574bee1915b7478d1a0
12 schema:keywords applicability
13 continuous quantum variables
14 continuous variables
15 continuous-variable states
16 criteria
17 entanglement
18 family
19 family of multipartite
20 inseparability criterion
21 linear optics
22 multi-party entanglement
23 multipartite
24 multipartite entanglement
25 optics
26 party continuous-variable states
27 properties
28 quantum
29 quantum variables
30 qubits
31 state
32 sufficient inseparability criterion
33 variables
34 schema:name Multipartite Entanglement for Continuous Variables
35 schema:pagination 111-143
36 schema:productId N6fa1d9689a1e4a1a8e1ae32e08225081
37 Ncaeb4245d575444ba847e6a3680cfdfe
38 schema:publisher N9b3c15629dcd468fb1f3cd5e71b2d5d9
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037727157
40 https://doi.org/10.1007/978-94-015-1258-9_12
41 schema:sdDatePublished 2021-12-01T20:00
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N6616e86379f04259ad459f9a62c28330
44 schema:url https://doi.org/10.1007/978-94-015-1258-9_12
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N00b7dcb23e904bb782fc258acc096ad6 schema:familyName Pati
49 schema:givenName Arun K.
50 rdf:type schema:Person
51 N0777f4c7be6140a7bdd067f2487beaa7 rdf:first N00b7dcb23e904bb782fc258acc096ad6
52 rdf:rest rdf:nil
53 N141263cc854946aa81429cb9a915b7b0 schema:familyName Braunstein
54 schema:givenName Samuel L.
55 rdf:type schema:Person
56 N2192cc11307f46e894b6447b639925db rdf:first sg:person.0703372700.35
57 rdf:rest Ncbd3036a17104cf1ad9815c1da2ff336
58 N6616e86379f04259ad459f9a62c28330 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N6fa1d9689a1e4a1a8e1ae32e08225081 schema:name dimensions_id
61 schema:value pub.1037727157
62 rdf:type schema:PropertyValue
63 N9b3c15629dcd468fb1f3cd5e71b2d5d9 schema:name Springer Nature
64 rdf:type schema:Organisation
65 Nc3527cbde0234574bee1915b7478d1a0 schema:isbn 978-90-481-6255-0
66 978-94-015-1258-9
67 schema:name Quantum Information with Continuous Variables
68 rdf:type schema:Book
69 Nc597890f37d147398ae8d73443642216 rdf:first N141263cc854946aa81429cb9a915b7b0
70 rdf:rest N0777f4c7be6140a7bdd067f2487beaa7
71 Ncaeb4245d575444ba847e6a3680cfdfe schema:name doi
72 schema:value 10.1007/978-94-015-1258-9_12
73 rdf:type schema:PropertyValue
74 Ncbd3036a17104cf1ad9815c1da2ff336 rdf:first sg:person.0666766367.22
75 rdf:rest rdf:nil
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
80 schema:name Quantum Physics
81 rdf:type schema:DefinedTerm
82 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.7362.0
83 schema:familyName Braunstein
84 schema:givenName Samuel L.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
86 rdf:type schema:Person
87 sg:person.0703372700.35 schema:affiliation grid-institutes:grid.5330.5
88 schema:familyName van Loock
89 schema:givenName Peter
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703372700.35
91 rdf:type schema:Person
92 grid-institutes:grid.5330.5 schema:alternateName Zentrum für Moderne Optik, Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
93 schema:name Zentrum für Moderne Optik, Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
94 rdf:type schema:Organization
95 grid-institutes:grid.7362.0 schema:alternateName Informatics, Bangor University, LL57 1UT, Bangor, UK
96 schema:name Informatics, Bangor University, LL57 1UT, Bangor, UK
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...