Dense Coding for Continuous Variables View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2000

AUTHORS

Samuel L. Braunstein , H. J. Kimble

ABSTRACT

A scheme to achieve dense quantum coding for the quadrature amplitudes of the electromagnetic field is presented. The protocol utilizes shared entanglement provided by nondegenerate parametric down-conversion in the limit of large gain to attain high efficiency. For a constraint in the mean number of photons \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar n$$\end{document} associated with modulation in the signal channel, the channel capacity for dense coding is found to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 + \bar n + {\bar n^2}$$\end{document}, which always beats coherent-state communication and surpasses squeezed-state communication for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar n > 1$$\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar n > > 1$$\end{document}, the dense coding capacity approaches twice that of either scheme. More... »

PAGES

95-103

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_10

DOI

http://dx.doi.org/10.1007/978-94-015-1258-9_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035926628


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Informatics, Bangor University, LL57 1UT, Bangor, UK", 
          "id": "http://www.grid.ac/institutes/grid.7362.0", 
          "name": [
            "Informatics, Bangor University, LL57 1UT, Bangor, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "id": "sg:person.0666766367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, 91125, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimble", 
        "givenName": "H. J.", 
        "id": "sg:person.01327141137.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327141137.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "A scheme to achieve dense quantum coding for the quadrature amplitudes of the electromagnetic field is presented. The protocol utilizes shared entanglement provided by nondegenerate parametric down-conversion in the limit of large gain to attain high efficiency. For a constraint in the mean number of photons \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\bar n$$\\end{document} associated with modulation in the signal channel, the channel capacity for dense coding is found to be \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1 + \\bar n + {\\bar n^2}$$\\end{document}, which always beats coherent-state communication and surpasses squeezed-state communication for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\bar n > 1$$\\end{document}. For \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\bar n >  > 1$$\\end{document}, the dense coding capacity approaches twice that of either scheme.", 
    "editor": [
      {
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pati", 
        "givenName": "Arun K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-015-1258-9_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-90-481-6255-0", 
        "978-94-015-1258-9"
      ], 
      "name": "Quantum Information with Continuous Variables", 
      "type": "Book"
    }, 
    "keywords": [
      "dense coding", 
      "nondegenerate parametric", 
      "electromagnetic field", 
      "quadrature amplitude", 
      "dense coding capacity", 
      "signal channels", 
      "quantum", 
      "photons", 
      "entanglement", 
      "large gains", 
      "high efficiency", 
      "channel capacity", 
      "field", 
      "parametric", 
      "amplitude", 
      "limit", 
      "coding capacity", 
      "coding", 
      "communication", 
      "modulation", 
      "scheme", 
      "channels", 
      "protocol", 
      "efficiency", 
      "gain", 
      "conversion", 
      "capacity", 
      "constraints", 
      "continuous variables", 
      "number", 
      "mean number", 
      "variables", 
      "dense quantum", 
      "coherent-state communication", 
      "squeezed-state communication"
    ], 
    "name": "Dense Coding for Continuous Variables", 
    "pagination": "95-103", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035926628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-015-1258-9_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-015-1258-9_10", 
      "https://app.dimensions.ai/details/publication/pub.1035926628"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_324.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-015-1258-9_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-015-1258-9_10'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-015-1258-9_10 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Ne4cba20935be44139d0076a553f8c373
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description A scheme to achieve dense quantum coding for the quadrature amplitudes of the electromagnetic field is presented. The protocol utilizes shared entanglement provided by nondegenerate parametric down-conversion in the limit of large gain to attain high efficiency. For a constraint in the mean number of photons \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar n$$\end{document} associated with modulation in the signal channel, the channel capacity for dense coding is found to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 + \bar n + {\bar n^2}$$\end{document}, which always beats coherent-state communication and surpasses squeezed-state communication for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar n > 1$$\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar n > > 1$$\end{document}, the dense coding capacity approaches twice that of either scheme.
7 schema:editor N210886f6ca1545189c500cbe5064546d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nc7781c27c1f941b2b4e8c4ba48e6c2af
12 schema:keywords amplitude
13 capacity
14 channel capacity
15 channels
16 coding
17 coding capacity
18 coherent-state communication
19 communication
20 constraints
21 continuous variables
22 conversion
23 dense coding
24 dense coding capacity
25 dense quantum
26 efficiency
27 electromagnetic field
28 entanglement
29 field
30 gain
31 high efficiency
32 large gains
33 limit
34 mean number
35 modulation
36 nondegenerate parametric
37 number
38 parametric
39 photons
40 protocol
41 quadrature amplitude
42 quantum
43 scheme
44 signal channels
45 squeezed-state communication
46 variables
47 schema:name Dense Coding for Continuous Variables
48 schema:pagination 95-103
49 schema:productId N296fff79405446e1b9db59e23fa196a2
50 Nc0526f37c6c84ef887a68be015a832e5
51 schema:publisher N8892cc215f36444f910bfbf6822ebda8
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035926628
53 https://doi.org/10.1007/978-94-015-1258-9_10
54 schema:sdDatePublished 2021-11-01T18:56
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N8ad40fa79ecd4065b746153494f043bc
57 schema:url https://doi.org/10.1007/978-94-015-1258-9_10
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N210886f6ca1545189c500cbe5064546d rdf:first N38275693fca1405fbf38d0008c2e9c60
62 rdf:rest Ncbbb297c145d43a6b02e1d0ffe03b2d7
63 N296fff79405446e1b9db59e23fa196a2 schema:name dimensions_id
64 schema:value pub.1035926628
65 rdf:type schema:PropertyValue
66 N38275693fca1405fbf38d0008c2e9c60 schema:familyName Braunstein
67 schema:givenName Samuel L.
68 rdf:type schema:Person
69 N8892cc215f36444f910bfbf6822ebda8 schema:name Springer Nature
70 rdf:type schema:Organisation
71 N8ad40fa79ecd4065b746153494f043bc schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N8f83608113d7464cba5e2bc2b2410c4d rdf:first sg:person.01327141137.36
74 rdf:rest rdf:nil
75 Nbe9c51177ad345f4a6b64022b7066aa3 schema:familyName Pati
76 schema:givenName Arun K.
77 rdf:type schema:Person
78 Nc0526f37c6c84ef887a68be015a832e5 schema:name doi
79 schema:value 10.1007/978-94-015-1258-9_10
80 rdf:type schema:PropertyValue
81 Nc7781c27c1f941b2b4e8c4ba48e6c2af schema:isbn 978-90-481-6255-0
82 978-94-015-1258-9
83 schema:name Quantum Information with Continuous Variables
84 rdf:type schema:Book
85 Ncbbb297c145d43a6b02e1d0ffe03b2d7 rdf:first Nbe9c51177ad345f4a6b64022b7066aa3
86 rdf:rest rdf:nil
87 Ne4cba20935be44139d0076a553f8c373 rdf:first sg:person.0666766367.22
88 rdf:rest N8f83608113d7464cba5e2bc2b2410c4d
89 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
90 schema:name Technology
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
93 schema:name Communications Technologies
94 rdf:type schema:DefinedTerm
95 sg:person.01327141137.36 schema:affiliation grid-institutes:grid.20861.3d
96 schema:familyName Kimble
97 schema:givenName H. J.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327141137.36
99 rdf:type schema:Person
100 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.7362.0
101 schema:familyName Braunstein
102 schema:givenName Samuel L.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
104 rdf:type schema:Person
105 grid-institutes:grid.20861.3d schema:alternateName Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, 91125, Pasadena, CA, USA
106 schema:name Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, 91125, Pasadena, CA, USA
107 rdf:type schema:Organization
108 grid-institutes:grid.7362.0 schema:alternateName Informatics, Bangor University, LL57 1UT, Bangor, UK
109 schema:name Informatics, Bangor University, LL57 1UT, Bangor, UK
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...