On Self-Similar Evolution for Multi-Dimensional Burgers Turbulence View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

S. N. Gurbatov , U. Frisch

ABSTRACT

This work is devoted to the evolution of random solutions of the unforced Burgers equation in d dimensions (v is the velocity and ψ the potential) 1 in the limit of vanishing viscosity ν. The one-dimensional “nonlinear diffusion equation” was originally introduced in the thirties by Jan M. Burgers as a model for turbulence. The three-dimensional Burgers equation has also received attention as an approximate model for the formation of large-scale structure of the Universe when pressure is negligible; it describes then the statistical properties of gravitational turbulence, that is, the nonlinear stage of the gravitational instability developing from random initial perturbations [1]–[3]. Other problems leading to multi-dimensional Burgers equations or variants include surface growth under deposition of dust and flame front motion. In such instances, the potential corresponds to the shape of the surface or of the front. More... »

PAGES

387-390

Book

TITLE

Advances in Turbulence VII

ISBN

978-94-010-6151-3
978-94-011-5118-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-5118-4_95

DOI

http://dx.doi.org/10.1007/978-94-011-5118-4_95

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031421303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "N. I. Lobachevsky State University of Nizhny Novgorod", 
          "id": "https://www.grid.ac/institutes/grid.28171.3d", 
          "name": [
            "Radiophysics Dept., University of Nizhny Novgorod, 23, Gagarin Ave., 603600, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gurbatov", 
        "givenName": "S. N.", 
        "id": "sg:person.0707327341.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707327341.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observatoire de la C\u00f4te d\u2019Azur", 
          "id": "https://www.grid.ac/institutes/grid.440460.2", 
          "name": [
            "Lab. G.D. Cassini, Observatoire de la C\u00f4te d\u2019Azur, B.P. 4229, F-06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "U.", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0022112097006241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054048702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839169"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "This work is devoted to the evolution of random solutions of the unforced Burgers equation in d dimensions (v is the velocity and \u03c8 the potential) 1 in the limit of vanishing viscosity \u03bd. The one-dimensional \u201cnonlinear diffusion equation\u201d was originally introduced in the thirties by Jan M. Burgers as a model for turbulence. The three-dimensional Burgers equation has also received attention as an approximate model for the formation of large-scale structure of the Universe when pressure is negligible; it describes then the statistical properties of gravitational turbulence, that is, the nonlinear stage of the gravitational instability developing from random initial perturbations [1]\u2013[3]. Other problems leading to multi-dimensional Burgers equations or variants include surface growth under deposition of dust and flame front motion. In such instances, the potential corresponds to the shape of the surface or of the front.", 
    "editor": [
      {
        "familyName": "Frisch", 
        "givenName": "Uriel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-5118-4_95", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-6151-3", 
        "978-94-011-5118-4"
      ], 
      "name": "Advances in Turbulence VII", 
      "type": "Book"
    }, 
    "name": "On Self-Similar Evolution for Multi-Dimensional Burgers Turbulence", 
    "pagination": "387-390", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031421303"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-5118-4_95"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "95af45683eaf61d177da6fd7ceb92245c20ea65f6e26e721d6a65cd02826874c"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-5118-4_95", 
      "https://app.dimensions.ai/details/publication/pub.1031421303"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119746_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-5118-4_95"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5118-4_95'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5118-4_95'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5118-4_95'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5118-4_95'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-5118-4_95 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0e13545c72bd4f0cba19bcc2f7f1224e
4 schema:citation https://doi.org/10.1017/s0022112097006241
5 https://doi.org/10.1103/revmodphys.61.185
6 schema:datePublished 1998
7 schema:datePublishedReg 1998-01-01
8 schema:description This work is devoted to the evolution of random solutions of the unforced Burgers equation in d dimensions (v is the velocity and ψ the potential) 1 in the limit of vanishing viscosity ν. The one-dimensional “nonlinear diffusion equation” was originally introduced in the thirties by Jan M. Burgers as a model for turbulence. The three-dimensional Burgers equation has also received attention as an approximate model for the formation of large-scale structure of the Universe when pressure is negligible; it describes then the statistical properties of gravitational turbulence, that is, the nonlinear stage of the gravitational instability developing from random initial perturbations [1]–[3]. Other problems leading to multi-dimensional Burgers equations or variants include surface growth under deposition of dust and flame front motion. In such instances, the potential corresponds to the shape of the surface or of the front.
9 schema:editor Nbf7648e5e15a405a8fb75b1587e03d83
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N7ff8a6fbfc12402583ea7a0caca21c98
14 schema:name On Self-Similar Evolution for Multi-Dimensional Burgers Turbulence
15 schema:pagination 387-390
16 schema:productId N021a8e7816ff4dbbb2f7ceef11f0a212
17 N3ded1eeb0b5c4ccb9fa88abb5c01992f
18 N8c62cfc96cbf4402ba20bd365f4c981a
19 schema:publisher N801e03192fa84c9a8ed381b98c4e11f4
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031421303
21 https://doi.org/10.1007/978-94-011-5118-4_95
22 schema:sdDatePublished 2019-04-16T09:42
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N3c86f7ef61c94783a973d0c3e4a06094
25 schema:url https://link.springer.com/10.1007%2F978-94-011-5118-4_95
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N021a8e7816ff4dbbb2f7ceef11f0a212 schema:name dimensions_id
30 schema:value pub.1031421303
31 rdf:type schema:PropertyValue
32 N0e13545c72bd4f0cba19bcc2f7f1224e rdf:first sg:person.0707327341.76
33 rdf:rest N0f33fe0c48c448bbaaea2f5a56cf131a
34 N0f33fe0c48c448bbaaea2f5a56cf131a rdf:first sg:person.011615073661.47
35 rdf:rest rdf:nil
36 N3c86f7ef61c94783a973d0c3e4a06094 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N3ded1eeb0b5c4ccb9fa88abb5c01992f schema:name readcube_id
39 schema:value 95af45683eaf61d177da6fd7ceb92245c20ea65f6e26e721d6a65cd02826874c
40 rdf:type schema:PropertyValue
41 N7ff8a6fbfc12402583ea7a0caca21c98 schema:isbn 978-94-010-6151-3
42 978-94-011-5118-4
43 schema:name Advances in Turbulence VII
44 rdf:type schema:Book
45 N801e03192fa84c9a8ed381b98c4e11f4 schema:location Dordrecht
46 schema:name Springer Netherlands
47 rdf:type schema:Organisation
48 N8c62cfc96cbf4402ba20bd365f4c981a schema:name doi
49 schema:value 10.1007/978-94-011-5118-4_95
50 rdf:type schema:PropertyValue
51 Nbf7648e5e15a405a8fb75b1587e03d83 rdf:first Ne0788a7ecbd946c8aaf1815ed9a0b9a6
52 rdf:rest rdf:nil
53 Ne0788a7ecbd946c8aaf1815ed9a0b9a6 schema:familyName Frisch
54 schema:givenName Uriel
55 rdf:type schema:Person
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
60 schema:name Statistics
61 rdf:type schema:DefinedTerm
62 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.440460.2
63 schema:familyName Frisch
64 schema:givenName U.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
66 rdf:type schema:Person
67 sg:person.0707327341.76 schema:affiliation https://www.grid.ac/institutes/grid.28171.3d
68 schema:familyName Gurbatov
69 schema:givenName S. N.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707327341.76
71 rdf:type schema:Person
72 https://doi.org/10.1017/s0022112097006241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054048702
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1103/revmodphys.61.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839169
75 rdf:type schema:CreativeWork
76 https://www.grid.ac/institutes/grid.28171.3d schema:alternateName N. I. Lobachevsky State University of Nizhny Novgorod
77 schema:name Radiophysics Dept., University of Nizhny Novgorod, 23, Gagarin Ave., 603600, Nizhny Novgorod, Russia
78 rdf:type schema:Organization
79 https://www.grid.ac/institutes/grid.440460.2 schema:alternateName Observatoire de la Côte d’Azur
80 schema:name Lab. G.D. Cassini, Observatoire de la Côte d’Azur, B.P. 4229, F-06304, Nice Cedex 4, France
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...