Asymptotic Model Selection for Directed Networks with Hidden Variables View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1998

AUTHORS

Dan Geiger , David Heckerman , Christopher Meek

ABSTRACT

We extend the Bayesian Information Criterion (BIC), an asymptotic approximation for the marginal likelihood, to Bayesian networks with hidden variables. This approximation can be used to select models given large samples of data. The standard BIC as well as our extension punishes the complexity of a model according to the dimension of its parameters. We argue that the dimension of a Bayesian network with hidden variables is the rank of the Jacobian matrix of the transformation between the parameters of the network and the parameters of the observable variables. We compute the dimensions of several networks including the naive Bayes model with a hidden root node. This manuscript was previously published in The Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, 1996, Morgan Kaufmann. More... »

PAGES

461-477

References to SciGraph publications

Book

TITLE

Learning in Graphical Models

ISBN

978-94-010-6104-9
978-94-011-5014-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-5014-9_16

DOI

http://dx.doi.org/10.1007/978-94-011-5014-9_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033861074


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Computer Science Department, Technion, 32000, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geiger", 
        "givenName": "Dan", 
        "id": "sg:person.0653041745.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653041745.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research, Bldg 9S, 98052-6399, Redmond, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heckerman", 
        "givenName": "David", 
        "id": "sg:person.01134362461.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134362461.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Philosophy, Carnegie-Mellon University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meek", 
        "givenName": "Christopher", 
        "id": "sg:person.01352023432.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352023432.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-1-4832-1451-1.50034-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012131640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035524560", 
          "https://doi.org/10.1007/bf00994016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(92)90065-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041504602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(92)90065-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041504602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044872629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.3230200507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045466199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046316965", 
          "https://doi.org/10.1007/bf00994110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-5430-7_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046982324", 
          "https://doi.org/10.1007/978-94-011-5430-7_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-5430-7_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046982324", 
          "https://doi.org/10.1007/978-94-011-5430-7_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-1451-1.50037-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052870567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/69.494161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061213478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176350709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177010888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105538415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105538472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1987.tb01694.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1987.tb01694.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458539"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "We extend the Bayesian Information Criterion (BIC), an asymptotic approximation for the marginal likelihood, to Bayesian networks with hidden variables. This approximation can be used to select models given large samples of data. The standard BIC as well as our extension punishes the complexity of a model according to the dimension of its parameters. We argue that the dimension of a Bayesian network with hidden variables is the rank of the Jacobian matrix of the transformation between the parameters of the network and the parameters of the observable variables. We compute the dimensions of several networks including the naive Bayes model with a hidden root node. This manuscript was previously published in The Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, 1996, Morgan Kaufmann.", 
    "editor": [
      {
        "familyName": "Jordan", 
        "givenName": "Michael I.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-5014-9_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-94-010-6104-9", 
        "978-94-011-5014-9"
      ], 
      "name": "Learning in Graphical Models", 
      "type": "Book"
    }, 
    "name": "Asymptotic Model Selection for Directed Networks with Hidden Variables", 
    "pagination": "461-477", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033861074"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-5014-9_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a14e193153d262c13e788642374c933f3b454457439f3168f8ac7fe691a98505"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-5014-9_16", 
      "https://app.dimensions.ai/details/publication/pub.1033861074"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130801_00000003.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-5014-9_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5014-9_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5014-9_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5014-9_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5014-9_16'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-5014-9_16 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N987786947b94435bb1452714076d0b53
4 schema:citation sg:pub.10.1007/978-94-011-5430-7_7
5 sg:pub.10.1007/bf00994016
6 sg:pub.10.1007/bf00994110
7 https://doi.org/10.1002/net.3230200507
8 https://doi.org/10.1016/0004-3702(92)90065-6
9 https://doi.org/10.1016/b978-1-4832-1451-1.50034-2
10 https://doi.org/10.1016/b978-1-4832-1451-1.50037-8
11 https://doi.org/10.1109/69.494161
12 https://doi.org/10.1111/j.2517-6161.1987.tb01694.x
13 https://doi.org/10.1214/aos/1176344136
14 https://doi.org/10.1214/aos/1176350709
15 https://doi.org/10.1214/ss/1177010888
16 https://doi.org/10.1613/jair.251
17 https://doi.org/10.1613/jair.62
18 schema:datePublished 1998
19 schema:datePublishedReg 1998-01-01
20 schema:description We extend the Bayesian Information Criterion (BIC), an asymptotic approximation for the marginal likelihood, to Bayesian networks with hidden variables. This approximation can be used to select models given large samples of data. The standard BIC as well as our extension punishes the complexity of a model according to the dimension of its parameters. We argue that the dimension of a Bayesian network with hidden variables is the rank of the Jacobian matrix of the transformation between the parameters of the network and the parameters of the observable variables. We compute the dimensions of several networks including the naive Bayes model with a hidden root node. This manuscript was previously published in The Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, 1996, Morgan Kaufmann.
21 schema:editor Nf751f64760b74ab396370147a7fcffbf
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Ne5e7d62be4a142c195abaf8e3b4a721b
26 schema:name Asymptotic Model Selection for Directed Networks with Hidden Variables
27 schema:pagination 461-477
28 schema:productId N206ebda1d7ee42f18d350bd871a5c0ff
29 N8c0c1dc81b0b40dc8b4d4fa18b21e3f0
30 Nc02c0d40e1064629b47bb9b62db8c08b
31 schema:publisher N5738b21c58e34c56a2e7c9d87e521ae0
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033861074
33 https://doi.org/10.1007/978-94-011-5014-9_16
34 schema:sdDatePublished 2019-04-16T09:13
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nc752ea6a0dda4db18792b017197aa966
37 schema:url https://link.springer.com/10.1007%2F978-94-011-5014-9_16
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N206ebda1d7ee42f18d350bd871a5c0ff schema:name dimensions_id
42 schema:value pub.1033861074
43 rdf:type schema:PropertyValue
44 N5738b21c58e34c56a2e7c9d87e521ae0 schema:location Dordrecht
45 schema:name Springer Netherlands
46 rdf:type schema:Organisation
47 N8c0c1dc81b0b40dc8b4d4fa18b21e3f0 schema:name doi
48 schema:value 10.1007/978-94-011-5014-9_16
49 rdf:type schema:PropertyValue
50 N987786947b94435bb1452714076d0b53 rdf:first sg:person.0653041745.45
51 rdf:rest Ncaaa9e8d671640ecaaf3a6d824f64e5d
52 Na3839f7982ff4761a65418ab2e1b5039 schema:familyName Jordan
53 schema:givenName Michael I.
54 rdf:type schema:Person
55 Naba3d66a43864e14aec0dbff5a7f4568 rdf:first sg:person.01352023432.48
56 rdf:rest rdf:nil
57 Nc02c0d40e1064629b47bb9b62db8c08b schema:name readcube_id
58 schema:value a14e193153d262c13e788642374c933f3b454457439f3168f8ac7fe691a98505
59 rdf:type schema:PropertyValue
60 Nc752ea6a0dda4db18792b017197aa966 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Ncaaa9e8d671640ecaaf3a6d824f64e5d rdf:first sg:person.01134362461.98
63 rdf:rest Naba3d66a43864e14aec0dbff5a7f4568
64 Ne5e7d62be4a142c195abaf8e3b4a721b schema:isbn 978-94-010-6104-9
65 978-94-011-5014-9
66 schema:name Learning in Graphical Models
67 rdf:type schema:Book
68 Nf751f64760b74ab396370147a7fcffbf rdf:first Na3839f7982ff4761a65418ab2e1b5039
69 rdf:rest rdf:nil
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
74 schema:name Statistics
75 rdf:type schema:DefinedTerm
76 sg:person.01134362461.98 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
77 schema:familyName Heckerman
78 schema:givenName David
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134362461.98
80 rdf:type schema:Person
81 sg:person.01352023432.48 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
82 schema:familyName Meek
83 schema:givenName Christopher
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352023432.48
85 rdf:type schema:Person
86 sg:person.0653041745.45 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
87 schema:familyName Geiger
88 schema:givenName Dan
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653041745.45
90 rdf:type schema:Person
91 sg:pub.10.1007/978-94-011-5430-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046982324
92 https://doi.org/10.1007/978-94-011-5430-7_7
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf00994016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035524560
95 https://doi.org/10.1007/bf00994016
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00994110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046316965
98 https://doi.org/10.1007/bf00994110
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/net.3230200507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045466199
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0004-3702(92)90065-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041504602
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/b978-1-4832-1451-1.50034-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012131640
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/b978-1-4832-1451-1.50037-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052870567
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/69.494161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061213478
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1111/j.2517-6161.1987.tb01694.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458539
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1214/aos/1176350709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409239
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1214/ss/1177010888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409646
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1613/jair.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105538415
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1613/jair.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105538472
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
123 schema:name Department of Philosophy, Carnegie-Mellon University, USA
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
126 schema:name Microsoft Research, Bldg 9S, 98052-6399, Redmond, WA, USA
127 rdf:type schema:Organization
128 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
129 schema:name Computer Science Department, Technion, 32000, Haifa, Israel
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...