The-State-of-the-Art of Nanostructured High Melting Point Compound-Based Materials View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

R. A. Andrievski

ABSTRACT

High-melting compounds (HMC) are carbides, nitrides, borides, oxides and other compounds with the melting point (Tm) above 2000°C (or even 2500°C). These limits are very conditional because there are no physical reasons for this selection but only considerations of convenience. As cited in [1], two-component HMC systems number at least 130, with Tm>2500°C, and about 240, with Tm.>2000°C. The number of well-studied and practically used HMCs is much less. This overview concerns HMCs that were most extensively studied such as TiN, TiC, TiB2, WC, AlN, Al2O3, Si3N4, SiC, BN, B4C, ZrO2, MgO, CeO2, Y2O3 and some others. These compounds may be described as advanced ceramics and their promising properties and wide application are well known. More... »

PAGES

263-282

Book

TITLE

Nanostructured Materials

ISBN

978-94-010-6100-1
978-94-011-5002-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-5002-6_13

DOI

http://dx.doi.org/10.1007/978-94-011-5002-6_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013482309


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for New Chemical Problems, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for New Chemical Problems, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andrievski", 
        "givenName": "R. A.", 
        "id": "sg:person.013433153367.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013433153367.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "High-melting compounds (HMC) are carbides, nitrides, borides, oxides and other compounds with the melting point (Tm) above 2000\u00b0C (or even 2500\u00b0C). These limits are very conditional because there are no physical reasons for this selection but only considerations of convenience. As cited in [1], two-component HMC systems number at least 130, with Tm>2500\u00b0C, and about 240, with Tm.>2000\u00b0C. The number of well-studied and practically used HMCs is much less. This overview concerns HMCs that were most extensively studied such as TiN, TiC, TiB2, WC, AlN, Al2O3, Si3N4, SiC, BN, B4C, ZrO2, MgO, CeO2, Y2O3 and some others. These compounds may be described as advanced ceramics and their promising properties and wide application are well known.", 
    "editor": [
      {
        "familyName": "Chow", 
        "givenName": "Gan-Moog", 
        "type": "Person"
      }, 
      {
        "familyName": "Noskova", 
        "givenName": "Nina Ivanovna", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-5002-6_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-6100-1", 
        "978-94-011-5002-6"
      ], 
      "name": "Nanostructured Materials", 
      "type": "Book"
    }, 
    "keywords": [
      "high-melting compounds", 
      "advanced ceramics", 
      "high melting point compounds", 
      "point compounds", 
      "promising properties", 
      "melting point", 
      "wide application", 
      "TiB2", 
      "B4C", 
      "carbide", 
      "Si3N4", 
      "ceramics", 
      "physical reasons", 
      "SiC", 
      "nitride", 
      "borides", 
      "Y2O3", 
      "AlN", 
      "ZrO2", 
      "WC", 
      "tin", 
      "Al2O3", 
      "TiC", 
      "CeO2", 
      "materials", 
      "oxide", 
      "MgO", 
      "BN", 
      "properties", 
      "only consideration", 
      "applications", 
      "Tm", 
      "limit", 
      "consideration", 
      "point", 
      "compounds", 
      "convenience", 
      "number", 
      "overview", 
      "reasons", 
      "system numbers", 
      "state", 
      "art", 
      "selection", 
      "two-component HMC systems number", 
      "HMC systems number", 
      "Nanostructured High Melting Point Compound", 
      "Melting Point Compound"
    ], 
    "name": "The-State-of-the-Art of Nanostructured High Melting Point Compound-Based Materials", 
    "pagination": "263-282", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013482309"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-5002-6_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-5002-6_13", 
      "https://app.dimensions.ai/details/publication/pub.1013482309"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_445.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-011-5002-6_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5002-6_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5002-6_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5002-6_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-5002-6_13'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-5002-6_13 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N16a0c452a5ab4d1fbe09bd287ccae2d6
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description High-melting compounds (HMC) are carbides, nitrides, borides, oxides and other compounds with the melting point (Tm) above 2000°C (or even 2500°C). These limits are very conditional because there are no physical reasons for this selection but only considerations of convenience. As cited in [1], two-component HMC systems number at least 130, with Tm>2500°C, and about 240, with Tm.>2000°C. The number of well-studied and practically used HMCs is much less. This overview concerns HMCs that were most extensively studied such as TiN, TiC, TiB2, WC, AlN, Al2O3, Si3N4, SiC, BN, B4C, ZrO2, MgO, CeO2, Y2O3 and some others. These compounds may be described as advanced ceramics and their promising properties and wide application are well known.
7 schema:editor N9e0fc44404fd4f948631eec7f9f14fd5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd68d1c80d49f448eac810ae1573845f6
12 schema:keywords Al2O3
13 AlN
14 B4C
15 BN
16 CeO2
17 HMC systems number
18 Melting Point Compound
19 MgO
20 Nanostructured High Melting Point Compound
21 Si3N4
22 SiC
23 TiB2
24 TiC
25 Tm
26 WC
27 Y2O3
28 ZrO2
29 advanced ceramics
30 applications
31 art
32 borides
33 carbide
34 ceramics
35 compounds
36 consideration
37 convenience
38 high melting point compounds
39 high-melting compounds
40 limit
41 materials
42 melting point
43 nitride
44 number
45 only consideration
46 overview
47 oxide
48 physical reasons
49 point
50 point compounds
51 promising properties
52 properties
53 reasons
54 selection
55 state
56 system numbers
57 tin
58 two-component HMC systems number
59 wide application
60 schema:name The-State-of-the-Art of Nanostructured High Melting Point Compound-Based Materials
61 schema:pagination 263-282
62 schema:productId N641ee360823f4f9c9fe3b46d7e372ffa
63 N8fcc54c9bb6e4252b6703c9d3819471e
64 schema:publisher Nba499e79495a4b5faca746afb063aa03
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013482309
66 https://doi.org/10.1007/978-94-011-5002-6_13
67 schema:sdDatePublished 2022-01-01T19:25
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nd919fd120476431780c1f4de075d5c2b
70 schema:url https://doi.org/10.1007/978-94-011-5002-6_13
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N16a0c452a5ab4d1fbe09bd287ccae2d6 rdf:first sg:person.013433153367.30
75 rdf:rest rdf:nil
76 N315cf78277c54c13b4aa7d9c6cea0b9b schema:familyName Chow
77 schema:givenName Gan-Moog
78 rdf:type schema:Person
79 N31930a039e3d42bea265cc437191483d rdf:first Ne1adca23365a4dedbb7cb2dd34901da3
80 rdf:rest rdf:nil
81 N641ee360823f4f9c9fe3b46d7e372ffa schema:name doi
82 schema:value 10.1007/978-94-011-5002-6_13
83 rdf:type schema:PropertyValue
84 N8fcc54c9bb6e4252b6703c9d3819471e schema:name dimensions_id
85 schema:value pub.1013482309
86 rdf:type schema:PropertyValue
87 N9e0fc44404fd4f948631eec7f9f14fd5 rdf:first N315cf78277c54c13b4aa7d9c6cea0b9b
88 rdf:rest N31930a039e3d42bea265cc437191483d
89 Nba499e79495a4b5faca746afb063aa03 schema:name Springer Nature
90 rdf:type schema:Organisation
91 Nd68d1c80d49f448eac810ae1573845f6 schema:isbn 978-94-010-6100-1
92 978-94-011-5002-6
93 schema:name Nanostructured Materials
94 rdf:type schema:Book
95 Nd919fd120476431780c1f4de075d5c2b schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Ne1adca23365a4dedbb7cb2dd34901da3 schema:familyName Noskova
98 schema:givenName Nina Ivanovna
99 rdf:type schema:Person
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
104 schema:name Materials Engineering
105 rdf:type schema:DefinedTerm
106 sg:person.013433153367.30 schema:affiliation grid-institutes:grid.4886.2
107 schema:familyName Andrievski
108 schema:givenName R. A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013433153367.30
110 rdf:type schema:Person
111 grid-institutes:grid.4886.2 schema:alternateName Institute for New Chemical Problems, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
112 schema:name Institute for New Chemical Problems, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...