Dynamics of a Magnetic Flux Tube in Differentially Rotating Disks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Atsushi Kuwabara , Ryoji Matsumoto , Kazunari Shibata , Wenchien Chou

ABSTRACT

We carried out three-dimensional magnetohydrodynamic simulations of the dynamics of a magnetic flux tube in rotating disks. The effects of spatial variation of gravity and differential rotation were taken into account. We adopted a local shearing box model (Hawley, Gammie, & Balbus, 1995) to study the dynamical evolution of an isolated, initially azimuthal flux tube. In rigidly rotating disks, the flux tube is twisted due to the coupling of Parker instability and Coriolis force (Chou et al., 1998). In differentially rotating disks, the magnetic energy may increase because the differential rotation stretches the twisted flux tube. Furthermore, magnetorotational instability (Balbus & Hawley, 1991) also affects the dynamical evolution of the flux tube. Figure 1 shows the simulation box and the initial condition of the simulation. An isolated horizontal flux tube whose radius is r is embedded in the Keplerian disk. The magnetic field is assumed to be purely toroidal. The model parameters are r, plasma β = (Pgas/Pmag) at the center of the flux tube, and the height of the initial flux tube is h. We assume a periodic boundary in azimuthal direction and a sliding periodic boundary in radial direction. Figure 2 shows the time development of (B2/8πP0) and (—BxBy/4πP0), where the bracket means spatial average. Figure 3 shows the isosurface of magnetic field strength (white surface) and magnetic field lines (gray) for a model with r = 0.2H, β = 1, and h = 1.0H where H is the scale height. We found that, in differentially rotating disks, (1) an isolated flux tube is destructed and generates turbulence due to the increase of magnetorotational instability; (2) intense azimuthal magnetic fields are intermittently created; and (3) after the initial amplification of magnetic energy saturates, the magnetic energy approaches a quasi-steady value. Numerical computations were carried out on VPP300/16R at NAOJ More... »

PAGES

233-234

Book

TITLE

Numerical Astrophysics

ISBN

978-94-010-6008-0
978-94-011-4780-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-4780-4_76

DOI

http://dx.doi.org/10.1007/978-94-011-4780-4_76

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030165007


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chiba University", 
          "id": "https://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Faculty of Science, Chiba University, Inage-ku, 263-8522, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuwabara", 
        "givenName": "Atsushi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chiba University", 
          "id": "https://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Faculty of Science, Chiba University, Inage-ku, 263-8522, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumoto", 
        "givenName": "Ryoji", 
        "id": "sg:person.016312170741.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016312170741.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Astronomical Observatory of Japan", 
          "id": "https://www.grid.ac/institutes/grid.458494.0", 
          "name": [
            "National Astronomical Observatory, 181-8588, Mitaka, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shibata", 
        "givenName": "Kazunari", 
        "id": "sg:person.07741311035.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741311035.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Institute for Fusion Studies, the University of Texas at Austin, 78712, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chou", 
        "givenName": "Wenchien", 
        "id": "sg:person.012171454507.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012171454507.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1086/175311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058506601"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "We carried out three-dimensional magnetohydrodynamic simulations of the dynamics of a magnetic flux tube in rotating disks. The effects of spatial variation of gravity and differential rotation were taken into account. We adopted a local shearing box model (Hawley, Gammie, & Balbus, 1995) to study the dynamical evolution of an isolated, initially azimuthal flux tube. In rigidly rotating disks, the flux tube is twisted due to the coupling of Parker instability and Coriolis force (Chou et al., 1998). In differentially rotating disks, the magnetic energy may increase because the differential rotation stretches the twisted flux tube. Furthermore, magnetorotational instability (Balbus & Hawley, 1991) also affects the dynamical evolution of the flux tube. Figure 1 shows the simulation box and the initial condition of the simulation. An isolated horizontal flux tube whose radius is r is embedded in the Keplerian disk. The magnetic field is assumed to be purely toroidal. The model parameters are r, plasma \u03b2 = (Pgas/Pmag) at the center of the flux tube, and the height of the initial flux tube is h. We assume a periodic boundary in azimuthal direction and a sliding periodic boundary in radial direction. Figure 2 shows the time development of (B2/8\u03c0P0) and (\u2014BxBy/4\u03c0P0), where the bracket means spatial average. Figure 3 shows the isosurface of magnetic field strength (white surface) and magnetic field lines (gray) for a model with r = 0.2H, \u03b2 = 1, and h = 1.0H where H is the scale height. We found that, in differentially rotating disks, (1) an isolated flux tube is destructed and generates turbulence due to the increase of magnetorotational instability; (2) intense azimuthal magnetic fields are intermittently created; and (3) after the initial amplification of magnetic energy saturates, the magnetic energy approaches a quasi-steady value. Numerical computations were carried out on VPP300/16R at NAOJ", 
    "editor": [
      {
        "familyName": "Miyama", 
        "givenName": "Shoken M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tomisaka", 
        "givenName": "Kohji", 
        "type": "Person"
      }, 
      {
        "familyName": "Hanawa", 
        "givenName": "Tomoyuki", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-4780-4_76", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-6008-0", 
        "978-94-011-4780-4"
      ], 
      "name": "Numerical Astrophysics", 
      "type": "Book"
    }, 
    "name": "Dynamics of a Magnetic Flux Tube in Differentially Rotating Disks", 
    "pagination": "233-234", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030165007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-4780-4_76"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fb4057e00ba876c74d92f8c7dead30f505828b91bbff66b88d45acde0ace3e8"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-4780-4_76", 
      "https://app.dimensions.ai/details/publication/pub.1030165007"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-4780-4_76"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-4780-4_76'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-4780-4_76'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-4780-4_76'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-4780-4_76'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-4780-4_76 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N47f4de3c86af43e5b928a315bd6fc257
4 schema:citation https://doi.org/10.1086/175311
5 schema:datePublished 1999
6 schema:datePublishedReg 1999-01-01
7 schema:description We carried out three-dimensional magnetohydrodynamic simulations of the dynamics of a magnetic flux tube in rotating disks. The effects of spatial variation of gravity and differential rotation were taken into account. We adopted a local shearing box model (Hawley, Gammie, & Balbus, 1995) to study the dynamical evolution of an isolated, initially azimuthal flux tube. In rigidly rotating disks, the flux tube is twisted due to the coupling of Parker instability and Coriolis force (Chou et al., 1998). In differentially rotating disks, the magnetic energy may increase because the differential rotation stretches the twisted flux tube. Furthermore, magnetorotational instability (Balbus & Hawley, 1991) also affects the dynamical evolution of the flux tube. Figure 1 shows the simulation box and the initial condition of the simulation. An isolated horizontal flux tube whose radius is r is embedded in the Keplerian disk. The magnetic field is assumed to be purely toroidal. The model parameters are r, plasma β = (Pgas/Pmag) at the center of the flux tube, and the height of the initial flux tube is h. We assume a periodic boundary in azimuthal direction and a sliding periodic boundary in radial direction. Figure 2 shows the time development of (B2/8πP0) and (—BxBy/4πP0), where the bracket means spatial average. Figure 3 shows the isosurface of magnetic field strength (white surface) and magnetic field lines (gray) for a model with r = 0.2H, β = 1, and h = 1.0H where H is the scale height. We found that, in differentially rotating disks, (1) an isolated flux tube is destructed and generates turbulence due to the increase of magnetorotational instability; (2) intense azimuthal magnetic fields are intermittently created; and (3) after the initial amplification of magnetic energy saturates, the magnetic energy approaches a quasi-steady value. Numerical computations were carried out on VPP300/16R at NAOJ
8 schema:editor Ne4bbc74bd8554206a20be4787af9ef14
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N47843c6606fb4c168f894486ffbb369c
13 schema:name Dynamics of a Magnetic Flux Tube in Differentially Rotating Disks
14 schema:pagination 233-234
15 schema:productId N59ab340d4cc1446e8ed170f84ac10381
16 N609be7998c864d2cbc8d0d10d8bf8261
17 Nd61ddbb9e9b24fc6b2afb9f9d9cf0f9c
18 schema:publisher Ne3e71220f5db4515aaf393f5a6271ffd
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030165007
20 https://doi.org/10.1007/978-94-011-4780-4_76
21 schema:sdDatePublished 2019-04-16T09:20
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nfdb86add72b9444181b2438dbf793a9a
24 schema:url https://link.springer.com/10.1007%2F978-94-011-4780-4_76
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N0e05cc19aee645c1bbc01b077407807f schema:familyName Hanawa
29 schema:givenName Tomoyuki
30 rdf:type schema:Person
31 N1c0d2d2f59334205bb97f765b97ff613 rdf:first N0e05cc19aee645c1bbc01b077407807f
32 rdf:rest rdf:nil
33 N1fad9325db254357a9d8df3b568575e3 rdf:first Nf69e396a6e504e6badc9f444183686df
34 rdf:rest N1c0d2d2f59334205bb97f765b97ff613
35 N251d2f61940a413a8a78134fabaa6955 rdf:first sg:person.07741311035.69
36 rdf:rest N4f26d335c3df43ffb5f2021e2bb666ff
37 N26711a9724fa43c08286887db9357290 rdf:first sg:person.016312170741.35
38 rdf:rest N251d2f61940a413a8a78134fabaa6955
39 N47843c6606fb4c168f894486ffbb369c schema:isbn 978-94-010-6008-0
40 978-94-011-4780-4
41 schema:name Numerical Astrophysics
42 rdf:type schema:Book
43 N47f4de3c86af43e5b928a315bd6fc257 rdf:first Nc86145ff7a0144939fff8f15c48fa0c9
44 rdf:rest N26711a9724fa43c08286887db9357290
45 N4f26d335c3df43ffb5f2021e2bb666ff rdf:first sg:person.012171454507.53
46 rdf:rest rdf:nil
47 N54bc8eca5e5a41e69637298a31468578 schema:familyName Miyama
48 schema:givenName Shoken M.
49 rdf:type schema:Person
50 N59ab340d4cc1446e8ed170f84ac10381 schema:name doi
51 schema:value 10.1007/978-94-011-4780-4_76
52 rdf:type schema:PropertyValue
53 N609be7998c864d2cbc8d0d10d8bf8261 schema:name dimensions_id
54 schema:value pub.1030165007
55 rdf:type schema:PropertyValue
56 Nc86145ff7a0144939fff8f15c48fa0c9 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
57 schema:familyName Kuwabara
58 schema:givenName Atsushi
59 rdf:type schema:Person
60 Nd61ddbb9e9b24fc6b2afb9f9d9cf0f9c schema:name readcube_id
61 schema:value 8fb4057e00ba876c74d92f8c7dead30f505828b91bbff66b88d45acde0ace3e8
62 rdf:type schema:PropertyValue
63 Ne3e71220f5db4515aaf393f5a6271ffd schema:location Dordrecht
64 schema:name Springer Netherlands
65 rdf:type schema:Organisation
66 Ne4bbc74bd8554206a20be4787af9ef14 rdf:first N54bc8eca5e5a41e69637298a31468578
67 rdf:rest N1fad9325db254357a9d8df3b568575e3
68 Nf69e396a6e504e6badc9f444183686df schema:familyName Tomisaka
69 schema:givenName Kohji
70 rdf:type schema:Person
71 Nfdb86add72b9444181b2438dbf793a9a schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
77 schema:name Interdisciplinary Engineering
78 rdf:type schema:DefinedTerm
79 sg:person.012171454507.53 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
80 schema:familyName Chou
81 schema:givenName Wenchien
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012171454507.53
83 rdf:type schema:Person
84 sg:person.016312170741.35 schema:affiliation https://www.grid.ac/institutes/grid.136304.3
85 schema:familyName Matsumoto
86 schema:givenName Ryoji
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016312170741.35
88 rdf:type schema:Person
89 sg:person.07741311035.69 schema:affiliation https://www.grid.ac/institutes/grid.458494.0
90 schema:familyName Shibata
91 schema:givenName Kazunari
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741311035.69
93 rdf:type schema:Person
94 https://doi.org/10.1086/175311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058506601
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.136304.3 schema:alternateName Chiba University
97 schema:name Faculty of Science, Chiba University, Inage-ku, 263-8522, Chiba, Japan
98 rdf:type schema:Organization
99 https://www.grid.ac/institutes/grid.458494.0 schema:alternateName National Astronomical Observatory of Japan
100 schema:name National Astronomical Observatory, 181-8588, Mitaka, Tokyo, Japan
101 rdf:type schema:Organization
102 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
103 schema:name Institute for Fusion Studies, the University of Texas at Austin, 78712, Austin, TX, USA
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...