On the Break-Up of Invariant Tori with three Frequencies View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1999

AUTHORS

J. D. Meiss

ABSTRACT

We construct an approximate renormalization operator for a two and one half degree of freedom Hamiltonian corresponding to an invariant torus with a frequency in the cubic field Q(τ), where ?3 + ?2 - 2? - 1 =0. This field has irrational vectors that are most robust in the sense of supremal Diophantine constant. Our renormalization operator has a critical fixed point, but it is not hyperbolic. Instead it has a codimension three stable manifold with one unstable eigenvalue, δ ≈ 2.88, and two neutral eigenvalues. More... »

PAGES

494-498

Book

TITLE

Hamiltonian Systems with Three or More Degrees of Freedom

ISBN

978-94-010-5968-8
978-94-011-4673-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-4673-9_64

DOI

http://dx.doi.org/10.1007/978-94-011-4673-9_64

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051404817


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Applied Mathematics, University of Colorado, 80309-0526, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meiss", 
        "givenName": "J. D.", 
        "id": "sg:person.0643670514.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-2789(91)90155-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002134240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(91)90155-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002134240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(83)90233-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022919798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(83)90233-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022919798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01209326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023741577", 
          "https://doi.org/10.1007/bf01209326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01209326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023741577", 
          "https://doi.org/10.1007/bf01209326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(89)90248-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023994993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(89)90248-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023994993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(94)90726-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024719073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(94)90726-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024719073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-9383(82)90023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037738931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90133-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048392322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90133-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048392322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01294641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052178658", 
          "https://doi.org/10.1007/bf01294641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01294641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052178658", 
          "https://doi.org/10.1007/bf01294641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1992v047n06abeh000965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058196358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/2/4/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/5/1/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.3426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.3426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098975732"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "We construct an approximate renormalization operator for a two and one half degree of freedom Hamiltonian corresponding to an invariant torus with a frequency in the cubic field Q(\u03c4), where ?3 + ?2 - 2? - 1 =0. This field has irrational vectors that are most robust in the sense of supremal Diophantine constant. Our renormalization operator has a critical fixed point, but it is not hyperbolic. Instead it has a codimension three stable manifold with one unstable eigenvalue, \u03b4 \u2248 2.88, and two neutral eigenvalues.", 
    "editor": [
      {
        "familyName": "Sim\u00f3", 
        "givenName": "Carles", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-4673-9_64", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-94-010-5968-8", 
        "978-94-011-4673-9"
      ], 
      "name": "Hamiltonian Systems with Three or More Degrees of Freedom", 
      "type": "Book"
    }, 
    "name": "On the Break-Up of Invariant Tori with three Frequencies", 
    "pagination": "494-498", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051404817"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-4673-9_64"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f4df228deb4c7957805a6f3d8c18b5bb53972ac8ffe8d32e5aab97baf44157dd"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-4673-9_64", 
      "https://app.dimensions.ai/details/publication/pub.1051404817"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56171_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-4673-9_64"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-4673-9_64'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-4673-9_64'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-4673-9_64'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-4673-9_64'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-4673-9_64 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Naf6321b842284228ab185dcaba5e9e61
4 schema:citation sg:pub.10.1007/bf01209326
5 sg:pub.10.1007/bf01294641
6 https://doi.org/10.1016/0040-9383(82)90023-4
7 https://doi.org/10.1016/0167-2789(83)90233-6
8 https://doi.org/10.1016/0167-2789(89)90248-0
9 https://doi.org/10.1016/0167-2789(90)90133-a
10 https://doi.org/10.1016/0167-2789(91)90155-3
11 https://doi.org/10.1016/0375-9601(94)90726-9
12 https://doi.org/10.1070/rm1992v047n06abeh000965
13 https://doi.org/10.1088/0951-7715/2/4/004
14 https://doi.org/10.1088/0951-7715/5/1/006
15 https://doi.org/10.1103/physreva.34.3426
16 https://doi.org/10.1142/2001
17 schema:datePublished 1999
18 schema:datePublishedReg 1999-01-01
19 schema:description We construct an approximate renormalization operator for a two and one half degree of freedom Hamiltonian corresponding to an invariant torus with a frequency in the cubic field Q(τ), where ?3 + ?2 - 2? - 1 =0. This field has irrational vectors that are most robust in the sense of supremal Diophantine constant. Our renormalization operator has a critical fixed point, but it is not hyperbolic. Instead it has a codimension three stable manifold with one unstable eigenvalue, δ ≈ 2.88, and two neutral eigenvalues.
20 schema:editor N96172b8987c642a6a06ac55693ac60bf
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N87efc41f10f54f6d89b398f221fa8fb7
25 schema:name On the Break-Up of Invariant Tori with three Frequencies
26 schema:pagination 494-498
27 schema:productId N1b0001086b874b3b98dbe9dd2bae4b83
28 Nc4864ef12e2f424a9b01c370d072a350
29 Ncd899bb9361a4cbc86c29920ee88f9ba
30 schema:publisher Ne3571153970e4bd58848fd17b77e898f
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051404817
32 https://doi.org/10.1007/978-94-011-4673-9_64
33 schema:sdDatePublished 2019-04-16T09:55
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N3dc693f488b148d885052632352cb950
36 schema:url https://link.springer.com/10.1007%2F978-94-011-4673-9_64
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N1b0001086b874b3b98dbe9dd2bae4b83 schema:name readcube_id
41 schema:value f4df228deb4c7957805a6f3d8c18b5bb53972ac8ffe8d32e5aab97baf44157dd
42 rdf:type schema:PropertyValue
43 N3dc693f488b148d885052632352cb950 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N71cf7e343f844632869d2eaa956cdccd schema:familyName Simó
46 schema:givenName Carles
47 rdf:type schema:Person
48 N87efc41f10f54f6d89b398f221fa8fb7 schema:isbn 978-94-010-5968-8
49 978-94-011-4673-9
50 schema:name Hamiltonian Systems with Three or More Degrees of Freedom
51 rdf:type schema:Book
52 N96172b8987c642a6a06ac55693ac60bf rdf:first N71cf7e343f844632869d2eaa956cdccd
53 rdf:rest rdf:nil
54 Naf6321b842284228ab185dcaba5e9e61 rdf:first sg:person.0643670514.20
55 rdf:rest rdf:nil
56 Nc4864ef12e2f424a9b01c370d072a350 schema:name doi
57 schema:value 10.1007/978-94-011-4673-9_64
58 rdf:type schema:PropertyValue
59 Ncd899bb9361a4cbc86c29920ee88f9ba schema:name dimensions_id
60 schema:value pub.1051404817
61 rdf:type schema:PropertyValue
62 Ne3571153970e4bd58848fd17b77e898f schema:location Dordrecht
63 schema:name Springer Netherlands
64 rdf:type schema:Organisation
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:person.0643670514.20 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
72 schema:familyName Meiss
73 schema:givenName J. D.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20
75 rdf:type schema:Person
76 sg:pub.10.1007/bf01209326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023741577
77 https://doi.org/10.1007/bf01209326
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01294641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052178658
80 https://doi.org/10.1007/bf01294641
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0040-9383(82)90023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037738931
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0167-2789(83)90233-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022919798
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0167-2789(89)90248-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023994993
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0167-2789(90)90133-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048392322
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0167-2789(91)90155-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002134240
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0375-9601(94)90726-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024719073
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1070/rm1992v047n06abeh000965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058196358
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1088/0951-7715/2/4/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109579
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/0951-7715/5/1/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110733
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physreva.34.3426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060475137
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1142/2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098975732
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
105 schema:name Department of Applied Mathematics, University of Colorado, 80309-0526, Boulder, CO, USA
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...