Pest damage relations at the field level View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

K. J. Boote , W. D. Batchelor , J. W. Jones , H. Pinnschmidt , G. Bourgeois

ABSTRACT

In view of large yield losses to various biotic pests, there is a critical need to adapt crop models to account for pest effects, either by direct coupling with mechanistic pest simulators, or by input of observed pest damage or numbers. Pest effects can be coupled to crop models by modifying crop state variables (mass or numbers of various tissues), rate variables (photosynthesis, water flow, senescence), or inputs (water, light, nutrients). An approach is presented whereby scouting data on observed pest damage is input via generic pest coupling modules in order to predict yield reduction from pests. Examples of this approach are presented for simulating the effects of defoliating insects, seed-feeding insects, and rootknot nematode on soybean growth using the SOYGRO model. A similar approach with the CERES-Rice model is used to simulate effects of leaf blast and other pests on rice growth and yield. Effects of leafspot disease on peanut growth and yield are illustrated with both the generic pest coupling approach and a mechanistic disease simulator coupled to the PNUTGRO model. A systematic approach to input pest damage effects into crop models offers potential to account for yield loss from pests and to determine action thresholds that are dynamic and different per season or region. More... »

PAGES

277-296

Book

TITLE

Systems approaches for agricultural development

ISBN

978-0-7923-1880-4
978-94-011-2840-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-2840-7_16

DOI

http://dx.doi.org/10.1007/978-94-011-2840-7_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006890142


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Crop and Pasture Production", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "University of Florida, Gainesville, 32611, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boote", 
        "givenName": "K. J.", 
        "id": "sg:person.0734535555.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734535555.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "University of Florida, Gainesville, 32611, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batchelor", 
        "givenName": "W. D.", 
        "id": "sg:person.010022005423.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010022005423.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "University of Florida, Gainesville, 32611, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "J. W.", 
        "id": "sg:person.01015756430.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015756430.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Rice Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "International Rice Research Institute, 933, 1099, Manila, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinnschmidt", 
        "givenName": "H.", 
        "id": "sg:person.014152656727.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014152656727.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Agriculture Canada, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourgeois", 
        "givenName": "G.", 
        "id": "sg:person.016710507350.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710507350.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3146/i0095-3679-9-2-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004368719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0048-4059(78)90032-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004709241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0308-521x(89)90013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007207562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0308-521x(89)90013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007207562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3180.1988.tb00829.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011897899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/187529275x00545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018008221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/187529275x00545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018008221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jee/69.1.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059776319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-65-777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060104596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-73-1581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060106874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-81-611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060109108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.31006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064897369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.33877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064899515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj1990.00021962008200050033x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068992607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1981.0011183x002100060038x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069019055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1990.0011183x003000040006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069022500"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "In view of large yield losses to various biotic pests, there is a critical need to adapt crop models to account for pest effects, either by direct coupling with mechanistic pest simulators, or by input of observed pest damage or numbers. Pest effects can be coupled to crop models by modifying crop state variables (mass or numbers of various tissues), rate variables (photosynthesis, water flow, senescence), or inputs (water, light, nutrients). An approach is presented whereby scouting data on observed pest damage is input via generic pest coupling modules in order to predict yield reduction from pests. Examples of this approach are presented for simulating the effects of defoliating insects, seed-feeding insects, and rootknot nematode on soybean growth using the SOYGRO model. A similar approach with the CERES-Rice model is used to simulate effects of leaf blast and other pests on rice growth and yield. Effects of leafspot disease on peanut growth and yield are illustrated with both the generic pest coupling approach and a mechanistic disease simulator coupled to the PNUTGRO model. A systematic approach to input pest damage effects into crop models offers potential to account for yield loss from pests and to determine action thresholds that are dynamic and different per season or region.", 
    "editor": [
      {
        "familyName": "Penning de Vries", 
        "givenName": "Frits", 
        "type": "Person"
      }, 
      {
        "familyName": "Teng", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "familyName": "Metselaar", 
        "givenName": "Klaas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-2840-7_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-7923-1880-4", 
        "978-94-011-2840-7"
      ], 
      "name": "Systems approaches for agricultural development", 
      "type": "Book"
    }, 
    "name": "Pest damage relations at the field level", 
    "pagination": "277-296", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006890142"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-2840-7_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "20d231b38cfd3521fac36b7a3116c2c6014dcdae1886673fb439e9e06c2b4e30"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-2840-7_16", 
      "https://app.dimensions.ai/details/publication/pub.1006890142"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106807_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-2840-7_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2840-7_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2840-7_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2840-7_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2840-7_16'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-2840-7_16 schema:about anzsrc-for:07
2 anzsrc-for:0703
3 schema:author N3e12093fd360412795576e131125895d
4 schema:citation https://doi.org/10.1016/0048-4059(78)90032-2
5 https://doi.org/10.1016/0308-521x(89)90013-9
6 https://doi.org/10.1093/jee/69.1.109
7 https://doi.org/10.1094/phyto-65-777
8 https://doi.org/10.1094/phyto-73-1581
9 https://doi.org/10.1094/phyto-81-611
10 https://doi.org/10.1111/j.1365-3180.1988.tb00829.x
11 https://doi.org/10.1163/187529275x00545
12 https://doi.org/10.13031/2013.31006
13 https://doi.org/10.13031/2013.33877
14 https://doi.org/10.2134/agronj1990.00021962008200050033x
15 https://doi.org/10.2135/cropsci1981.0011183x002100060038x
16 https://doi.org/10.2135/cropsci1990.0011183x003000040006x
17 https://doi.org/10.3146/i0095-3679-9-2-10
18 schema:datePublished 1993
19 schema:datePublishedReg 1993-01-01
20 schema:description In view of large yield losses to various biotic pests, there is a critical need to adapt crop models to account for pest effects, either by direct coupling with mechanistic pest simulators, or by input of observed pest damage or numbers. Pest effects can be coupled to crop models by modifying crop state variables (mass or numbers of various tissues), rate variables (photosynthesis, water flow, senescence), or inputs (water, light, nutrients). An approach is presented whereby scouting data on observed pest damage is input via generic pest coupling modules in order to predict yield reduction from pests. Examples of this approach are presented for simulating the effects of defoliating insects, seed-feeding insects, and rootknot nematode on soybean growth using the SOYGRO model. A similar approach with the CERES-Rice model is used to simulate effects of leaf blast and other pests on rice growth and yield. Effects of leafspot disease on peanut growth and yield are illustrated with both the generic pest coupling approach and a mechanistic disease simulator coupled to the PNUTGRO model. A systematic approach to input pest damage effects into crop models offers potential to account for yield loss from pests and to determine action thresholds that are dynamic and different per season or region.
21 schema:editor Nb267ddb3249040a88d5b42991b7f56fc
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N3141c719d49e4d03be9a16167878a280
26 schema:name Pest damage relations at the field level
27 schema:pagination 277-296
28 schema:productId N27340a17c8d54244b7d5eb99953f0a40
29 N43edf06fce6047e2a4f19cdf29c7325d
30 Nf14d5b715bb24f49a39972dfc589246f
31 schema:publisher N0d2788730d694666ae7c2f40614c1556
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890142
33 https://doi.org/10.1007/978-94-011-2840-7_16
34 schema:sdDatePublished 2019-04-16T10:07
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N0e478140cbe145528f869faed5c58c4b
37 schema:url https://link.springer.com/10.1007%2F978-94-011-2840-7_16
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N0d2788730d694666ae7c2f40614c1556 schema:location Dordrecht
42 schema:name Springer Netherlands
43 rdf:type schema:Organisation
44 N0e478140cbe145528f869faed5c58c4b schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N25549e3168694cd2aa7e1f2ca8982983 schema:familyName Penning de Vries
47 schema:givenName Frits
48 rdf:type schema:Person
49 N27340a17c8d54244b7d5eb99953f0a40 schema:name doi
50 schema:value 10.1007/978-94-011-2840-7_16
51 rdf:type schema:PropertyValue
52 N2e91a76095cb4c848275c38d3ea3229c rdf:first Nf64cf5849ab54781aa3cd995b098827d
53 rdf:rest Nc30bed913a6e48208b5e1957480cedc3
54 N3141c719d49e4d03be9a16167878a280 schema:isbn 978-0-7923-1880-4
55 978-94-011-2840-7
56 schema:name Systems approaches for agricultural development
57 rdf:type schema:Book
58 N3e12093fd360412795576e131125895d rdf:first sg:person.0734535555.64
59 rdf:rest N7bd82ce69ac44c01a69c18a04292fa36
60 N43edf06fce6047e2a4f19cdf29c7325d schema:name dimensions_id
61 schema:value pub.1006890142
62 rdf:type schema:PropertyValue
63 N7bd82ce69ac44c01a69c18a04292fa36 rdf:first sg:person.010022005423.23
64 rdf:rest Nd7f7b0a330df4a6c8a4195ba952ad104
65 N9828e01fcb5144478080c4d546d4918e schema:familyName Metselaar
66 schema:givenName Klaas
67 rdf:type schema:Person
68 N9c4100168cc44fd3b80b27ae1d67e367 rdf:first sg:person.014152656727.25
69 rdf:rest Ne2f340f3be8d47d489c4d12e071a4cad
70 Nb267ddb3249040a88d5b42991b7f56fc rdf:first N25549e3168694cd2aa7e1f2ca8982983
71 rdf:rest N2e91a76095cb4c848275c38d3ea3229c
72 Nc30bed913a6e48208b5e1957480cedc3 rdf:first N9828e01fcb5144478080c4d546d4918e
73 rdf:rest rdf:nil
74 Nd7f7b0a330df4a6c8a4195ba952ad104 rdf:first sg:person.01015756430.71
75 rdf:rest N9c4100168cc44fd3b80b27ae1d67e367
76 Ne2f340f3be8d47d489c4d12e071a4cad rdf:first sg:person.016710507350.83
77 rdf:rest rdf:nil
78 Nf14d5b715bb24f49a39972dfc589246f schema:name readcube_id
79 schema:value 20d231b38cfd3521fac36b7a3116c2c6014dcdae1886673fb439e9e06c2b4e30
80 rdf:type schema:PropertyValue
81 Nf64cf5849ab54781aa3cd995b098827d schema:familyName Teng
82 schema:givenName Paul
83 rdf:type schema:Person
84 Nfb55fc4bc567482e831e7d22c08ad83e schema:name Agriculture Canada, Quebec, Canada
85 rdf:type schema:Organization
86 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
87 schema:name Agricultural and Veterinary Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
90 schema:name Crop and Pasture Production
91 rdf:type schema:DefinedTerm
92 sg:person.010022005423.23 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
93 schema:familyName Batchelor
94 schema:givenName W. D.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010022005423.23
96 rdf:type schema:Person
97 sg:person.01015756430.71 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
98 schema:familyName Jones
99 schema:givenName J. W.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015756430.71
101 rdf:type schema:Person
102 sg:person.014152656727.25 schema:affiliation https://www.grid.ac/institutes/grid.419387.0
103 schema:familyName Pinnschmidt
104 schema:givenName H.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014152656727.25
106 rdf:type schema:Person
107 sg:person.016710507350.83 schema:affiliation Nfb55fc4bc567482e831e7d22c08ad83e
108 schema:familyName Bourgeois
109 schema:givenName G.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710507350.83
111 rdf:type schema:Person
112 sg:person.0734535555.64 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
113 schema:familyName Boote
114 schema:givenName K. J.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734535555.64
116 rdf:type schema:Person
117 https://doi.org/10.1016/0048-4059(78)90032-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004709241
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0308-521x(89)90013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007207562
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1093/jee/69.1.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059776319
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1094/phyto-65-777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060104596
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1094/phyto-73-1581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060106874
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1094/phyto-81-611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060109108
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/j.1365-3180.1988.tb00829.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011897899
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1163/187529275x00545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018008221
132 rdf:type schema:CreativeWork
133 https://doi.org/10.13031/2013.31006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064897369
134 rdf:type schema:CreativeWork
135 https://doi.org/10.13031/2013.33877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064899515
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2134/agronj1990.00021962008200050033x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068992607
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2135/cropsci1981.0011183x002100060038x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069019055
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2135/cropsci1990.0011183x003000040006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069022500
142 rdf:type schema:CreativeWork
143 https://doi.org/10.3146/i0095-3679-9-2-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004368719
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
146 schema:name University of Florida, Gainesville, 32611, Florida, USA
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.419387.0 schema:alternateName International Rice Research Institute
149 schema:name International Rice Research Institute, 933, 1099, Manila, Philippines
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...