Second order Hamilton-Jacobi equations in infinite dimensions and stochastic optimal control problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

P. Cannarsa , G. Da Prato

ABSTRACT

Second order Hamilton-Jacobi equations in infinite dimensions are semilinear parabolic equations in which the unknown function u(t, x) is defined for real t and x belonging to a Hilbert space X. Our presentation will focus on the relationship between such equations and stochastic optimal control of distributed parameter systems. Perturbation methods can be used to study Hamilton-Jacobi equations.Such methods are based on a detailed analysis of the linearized problem, which is related to solutions of some stochastic partial differential equations. We will describe two different approaches to the linearized equation: one is based on the probabilistic representation formula for the solution, the other uses just functional analysis. More... »

PAGES

617-629

Book

TITLE

Probabilistic and Stochastic Methods in Analysis, with Applications

ISBN

978-94-010-5239-9
978-94-011-2791-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30

DOI

http://dx.doi.org/10.1007/978-94-011-2791-2_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036993361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, Via O. Raimondo, 00173, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "P.", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Da Prato", 
        "givenName": "G.", 
        "id": "sg:person.011630552301.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630552301.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/03605307608820022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003669962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1984-0732102-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009454689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(85)90045-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023112378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024024845", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6380-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024024845", 
          "https://doi.org/10.1007/978-1-4612-6380-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6380-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024024845", 
          "https://doi.org/10.1007/978-1-4612-6380-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1983-0690039-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031839902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(89)90062-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047943891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(92)90256-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054544584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0323006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062843794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0329026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844280"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992", 
    "datePublishedReg": "1992-01-01", 
    "description": "Second order Hamilton-Jacobi equations in infinite dimensions are semilinear parabolic equations in which the unknown function u(t, x) is defined for real t and x belonging to a Hilbert space X. Our presentation will focus on the relationship between such equations and stochastic optimal control of distributed parameter systems. Perturbation methods can be used to study Hamilton-Jacobi equations.Such methods are based on a detailed analysis of the linearized problem, which is related to solutions of some stochastic partial differential equations. We will describe two different approaches to the linearized equation: one is based on the probabilistic representation formula for the solution, the other uses just functional analysis.", 
    "editor": [
      {
        "familyName": "Byrnes", 
        "givenName": "J. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Byrnes", 
        "givenName": "Jennifer L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hargreaves", 
        "givenName": "Kathryn A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Berry", 
        "givenName": "Karl", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-2791-2_30", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-5239-9", 
        "978-94-011-2791-2"
      ], 
      "name": "Probabilistic and Stochastic Methods in Analysis, with Applications", 
      "type": "Book"
    }, 
    "name": "Second order Hamilton-Jacobi equations in infinite dimensions and stochastic optimal control problems", 
    "pagination": "617-629", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036993361"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-2791-2_30"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b039418bcba402d3d039aa6517c65039531e63f1320eb51dbb19e283ed2298da"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-2791-2_30", 
      "https://app.dimensions.ai/details/publication/pub.1036993361"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000003.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-2791-2_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-2791-2_30 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N5966b7175f0c424ca7960381e219e973
4 schema:citation sg:pub.10.1007/978-1-4612-5561-1
5 sg:pub.10.1007/978-1-4612-6380-7
6 https://app.dimensions.ai/details/publication/pub.1024024845
7 https://doi.org/10.1016/0022-1236(89)90062-1
8 https://doi.org/10.1016/0022-247x(92)90256-d
9 https://doi.org/10.1016/0362-546x(85)90045-8
10 https://doi.org/10.1080/03605307608820022
11 https://doi.org/10.1090/s0002-9947-1983-0690039-8
12 https://doi.org/10.1090/s0002-9947-1984-0732102-x
13 https://doi.org/10.1137/0323006
14 https://doi.org/10.1137/0329026
15 schema:datePublished 1992
16 schema:datePublishedReg 1992-01-01
17 schema:description Second order Hamilton-Jacobi equations in infinite dimensions are semilinear parabolic equations in which the unknown function u(t, x) is defined for real t and x belonging to a Hilbert space X. Our presentation will focus on the relationship between such equations and stochastic optimal control of distributed parameter systems. Perturbation methods can be used to study Hamilton-Jacobi equations.Such methods are based on a detailed analysis of the linearized problem, which is related to solutions of some stochastic partial differential equations. We will describe two different approaches to the linearized equation: one is based on the probabilistic representation formula for the solution, the other uses just functional analysis.
18 schema:editor N11934b9228054faf99c661b178517b15
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Ne47619d3fe5e47b5851476903815ac55
23 schema:name Second order Hamilton-Jacobi equations in infinite dimensions and stochastic optimal control problems
24 schema:pagination 617-629
25 schema:productId N5431ad18cdac434eace1909e86b558b2
26 N8783362ed79443cfb3dae7467afa06dd
27 N8e5710e278714655af811f94c010eecb
28 schema:publisher N91a82704042b4c12910765f3328ba833
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036993361
30 https://doi.org/10.1007/978-94-011-2791-2_30
31 schema:sdDatePublished 2019-04-16T09:11
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N89e43d106d944dbe9fb2c652d8ac1da4
34 schema:url https://link.springer.com/10.1007%2F978-94-011-2791-2_30
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N03be40ce783640b4b1c1f547d04bfb97 rdf:first Nf4a23c06f0d04190abcdb574dfb860ea
39 rdf:rest Nb6d56f1fb6f14a32b9ebe53a0c14dd39
40 N11934b9228054faf99c661b178517b15 rdf:first Neea92b89ad894fcf8506403ae51a6544
41 rdf:rest N03be40ce783640b4b1c1f547d04bfb97
42 N50fd714e243846008009fca5f7194cec schema:familyName Berry
43 schema:givenName Karl
44 rdf:type schema:Person
45 N53379b9ae39946318030e83e4b27ed25 rdf:first N50fd714e243846008009fca5f7194cec
46 rdf:rest rdf:nil
47 N5431ad18cdac434eace1909e86b558b2 schema:name dimensions_id
48 schema:value pub.1036993361
49 rdf:type schema:PropertyValue
50 N5966b7175f0c424ca7960381e219e973 rdf:first sg:person.014257010655.09
51 rdf:rest Nd605bdd2b78e407b948eb2957416a1c7
52 N8783362ed79443cfb3dae7467afa06dd schema:name readcube_id
53 schema:value b039418bcba402d3d039aa6517c65039531e63f1320eb51dbb19e283ed2298da
54 rdf:type schema:PropertyValue
55 N89e43d106d944dbe9fb2c652d8ac1da4 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N8e5710e278714655af811f94c010eecb schema:name doi
58 schema:value 10.1007/978-94-011-2791-2_30
59 rdf:type schema:PropertyValue
60 N91a82704042b4c12910765f3328ba833 schema:location Dordrecht
61 schema:name Springer Netherlands
62 rdf:type schema:Organisation
63 Nb6d56f1fb6f14a32b9ebe53a0c14dd39 rdf:first Nc1add09307034961953295934b49e025
64 rdf:rest N53379b9ae39946318030e83e4b27ed25
65 Nc1add09307034961953295934b49e025 schema:familyName Hargreaves
66 schema:givenName Kathryn A.
67 rdf:type schema:Person
68 Nd605bdd2b78e407b948eb2957416a1c7 rdf:first sg:person.011630552301.04
69 rdf:rest rdf:nil
70 Ne47619d3fe5e47b5851476903815ac55 schema:isbn 978-94-010-5239-9
71 978-94-011-2791-2
72 schema:name Probabilistic and Stochastic Methods in Analysis, with Applications
73 rdf:type schema:Book
74 Neea92b89ad894fcf8506403ae51a6544 schema:familyName Byrnes
75 schema:givenName J. S.
76 rdf:type schema:Person
77 Nf4a23c06f0d04190abcdb574dfb860ea schema:familyName Byrnes
78 schema:givenName Jennifer L.
79 rdf:type schema:Person
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
84 schema:name Applied Mathematics
85 rdf:type schema:DefinedTerm
86 sg:person.011630552301.04 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
87 schema:familyName Da Prato
88 schema:givenName G.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630552301.04
90 rdf:type schema:Person
91 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
92 schema:familyName Cannarsa
93 schema:givenName P.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4612-5561-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042930842
97 https://doi.org/10.1007/978-1-4612-5561-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-1-4612-6380-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024024845
100 https://doi.org/10.1007/978-1-4612-6380-7
101 rdf:type schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1024024845 schema:CreativeWork
103 https://doi.org/10.1016/0022-1236(89)90062-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047943891
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0022-247x(92)90256-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1054544584
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0362-546x(85)90045-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023112378
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/03605307608820022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003669962
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1090/s0002-9947-1983-0690039-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031839902
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1090/s0002-9947-1984-0732102-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009454689
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1137/0323006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843794
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1137/0329026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844280
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
120 schema:name Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
123 schema:name Dipartimento di Matematica, Università di Roma Tor Vergata, Via O. Raimondo, 00173, Roma, Italy
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...