Ontology type: schema:Chapter
1992
AUTHORS ABSTRACTSecond order Hamilton-Jacobi equations in infinite dimensions are semilinear parabolic equations in which the unknown function u(t, x) is defined for real t and x belonging to a Hilbert space X. Our presentation will focus on the relationship between such equations and stochastic optimal control of distributed parameter systems. Perturbation methods can be used to study Hamilton-Jacobi equations.Such methods are based on a detailed analysis of the linearized problem, which is related to solutions of some stochastic partial differential equations. We will describe two different approaches to the linearized equation: one is based on the probabilistic representation formula for the solution, the other uses just functional analysis. More... »
PAGES617-629
Probabilistic and Stochastic Methods in Analysis, with Applications
ISBN
978-94-010-5239-9
978-94-011-2791-2
http://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30
DOIhttp://dx.doi.org/10.1007/978-94-011-2791-2_30
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036993361
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, Via O. Raimondo, 00173, Roma, Italy"
],
"type": "Organization"
},
"familyName": "Cannarsa",
"givenName": "P.",
"id": "sg:person.014257010655.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Da Prato",
"givenName": "G.",
"id": "sg:person.011630552301.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630552301.04"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1080/03605307608820022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003669962"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1984-0732102-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009454689"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0362-546x(85)90045-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023112378"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1024024845",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-6380-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024024845",
"https://doi.org/10.1007/978-1-4612-6380-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-6380-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024024845",
"https://doi.org/10.1007/978-1-4612-6380-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1983-0690039-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031839902"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-5561-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042930842",
"https://doi.org/10.1007/978-1-4612-5561-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-5561-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042930842",
"https://doi.org/10.1007/978-1-4612-5561-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-1236(89)90062-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047943891"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-247x(92)90256-d",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054544584"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0323006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062843794"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0329026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062844280"
],
"type": "CreativeWork"
}
],
"datePublished": "1992",
"datePublishedReg": "1992-01-01",
"description": "Second order Hamilton-Jacobi equations in infinite dimensions are semilinear parabolic equations in which the unknown function u(t, x) is defined for real t and x belonging to a Hilbert space X. Our presentation will focus on the relationship between such equations and stochastic optimal control of distributed parameter systems. Perturbation methods can be used to study Hamilton-Jacobi equations.Such methods are based on a detailed analysis of the linearized problem, which is related to solutions of some stochastic partial differential equations. We will describe two different approaches to the linearized equation: one is based on the probabilistic representation formula for the solution, the other uses just functional analysis.",
"editor": [
{
"familyName": "Byrnes",
"givenName": "J. S.",
"type": "Person"
},
{
"familyName": "Byrnes",
"givenName": "Jennifer L.",
"type": "Person"
},
{
"familyName": "Hargreaves",
"givenName": "Kathryn A.",
"type": "Person"
},
{
"familyName": "Berry",
"givenName": "Karl",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-011-2791-2_30",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-94-010-5239-9",
"978-94-011-2791-2"
],
"name": "Probabilistic and Stochastic Methods in Analysis, with Applications",
"type": "Book"
},
"name": "Second order Hamilton-Jacobi equations in infinite dimensions and stochastic optimal control problems",
"pagination": "617-629",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036993361"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-011-2791-2_30"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b039418bcba402d3d039aa6517c65039531e63f1320eb51dbb19e283ed2298da"
]
}
],
"publisher": {
"location": "Dordrecht",
"name": "Springer Netherlands",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-011-2791-2_30",
"https://app.dimensions.ai/details/publication/pub.1036993361"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T09:11",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000003.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-94-011-2791-2_30"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2791-2_30'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
23 PREDICATES
38 URIs
20 LITERALS
8 BLANK NODES