Extended Structures in (2 + 1) Dimensions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

B. Piette , W. J. Zakrzewski

ABSTRACT

We study extended structure solutions of the S2 sigma model and the corresponding Skyrme models in (2 + 1) dimensions. We review some results reported earlier and concentrate our attention on the process of annihilation of two such structures - one corresponding to a soliton like object and another to an antisoliton. We find that the process of annihilation proceeds in three stages; the initial approach, then rapid annihilation of the soliton cores followed slow annihilation of the soliton tails. More... »

PAGES

47-63

Book

TITLE

Applications of Analytic and Geometric Methods to Nonlinear Differential Equations

ISBN

978-94-010-4924-5
978-94-011-2082-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6

DOI

http://dx.doi.org/10.1007/978-94-011-2082-1_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027645191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Newcastle University", 
          "id": "https://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "Department of Mathematical Sciences, The University, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piette", 
        "givenName": "B.", 
        "id": "sg:person.014121444104.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Newcastle University", 
          "id": "https://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "Department of Mathematical Sciences, The University, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zakrzewski", 
        "givenName": "W. J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90432-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033308098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90432-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033308098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1961.0018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037916716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.523400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058100420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/3/2/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/3/3/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/5/2/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110748"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "We study extended structure solutions of the S2 sigma model and the corresponding Skyrme models in (2 + 1) dimensions. We review some results reported earlier and concentrate our attention on the process of annihilation of two such structures - one corresponding to a soliton like object and another to an antisoliton. We find that the process of annihilation proceeds in three stages; the initial approach, then rapid annihilation of the soliton cores followed slow annihilation of the soliton tails.", 
    "editor": [
      {
        "familyName": "Clarkson", 
        "givenName": "Peter A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-2082-1_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-4924-5", 
        "978-94-011-2082-1"
      ], 
      "name": "Applications of Analytic and Geometric Methods to Nonlinear Differential Equations", 
      "type": "Book"
    }, 
    "name": "Extended Structures in (2 + 1) Dimensions", 
    "pagination": "47-63", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027645191"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-2082-1_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83b21131cac080c05e07a901a9155697cf4c486ddcbf78d4d54ea4c19dd41d37"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-2082-1_6", 
      "https://app.dimensions.ai/details/publication/pub.1027645191"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68947_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-2082-1_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-2082-1_6 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Ne81314e566254632919d214ca88cc4ea
4 schema:citation https://doi.org/10.1016/0550-3213(78)90432-7
5 https://doi.org/10.1063/1.523400
6 https://doi.org/10.1088/0951-7715/3/2/007
7 https://doi.org/10.1088/0951-7715/3/3/011
8 https://doi.org/10.1088/0951-7715/5/2/012
9 https://doi.org/10.1098/rspa.1961.0018
10 schema:datePublished 1993
11 schema:datePublishedReg 1993-01-01
12 schema:description We study extended structure solutions of the S2 sigma model and the corresponding Skyrme models in (2 + 1) dimensions. We review some results reported earlier and concentrate our attention on the process of annihilation of two such structures - one corresponding to a soliton like object and another to an antisoliton. We find that the process of annihilation proceeds in three stages; the initial approach, then rapid annihilation of the soliton cores followed slow annihilation of the soliton tails.
13 schema:editor N6bf56148bce74ae388022db9d73d410a
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nbe6609f32e6949d39da25406bb22888d
18 schema:name Extended Structures in (2 + 1) Dimensions
19 schema:pagination 47-63
20 schema:productId Na44fcae9a7fc4a5c908368e4c137931b
21 Nc809dfd019914d7698e35762ea1c1b09
22 Nfa34be8ffd7d48dabb1e686dce2ef7a4
23 schema:publisher Nf17c1044d5d6452a85809039f2cee63e
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027645191
25 https://doi.org/10.1007/978-94-011-2082-1_6
26 schema:sdDatePublished 2019-04-16T08:55
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N16670ae8df444c97b58aa2e099939487
29 schema:url https://link.springer.com/10.1007%2F978-94-011-2082-1_6
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N16670ae8df444c97b58aa2e099939487 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N6bf56148bce74ae388022db9d73d410a rdf:first Nb2a375a1533c4e91b37195f78eb4937a
36 rdf:rest rdf:nil
37 N78068d1384e44094b12cfd8e4389aafa rdf:first Na252f679da7e41aa9d38c1e23238d3d3
38 rdf:rest rdf:nil
39 Na252f679da7e41aa9d38c1e23238d3d3 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
40 schema:familyName Zakrzewski
41 schema:givenName W. J.
42 rdf:type schema:Person
43 Na44fcae9a7fc4a5c908368e4c137931b schema:name dimensions_id
44 schema:value pub.1027645191
45 rdf:type schema:PropertyValue
46 Nb2a375a1533c4e91b37195f78eb4937a schema:familyName Clarkson
47 schema:givenName Peter A.
48 rdf:type schema:Person
49 Nbe6609f32e6949d39da25406bb22888d schema:isbn 978-94-010-4924-5
50 978-94-011-2082-1
51 schema:name Applications of Analytic and Geometric Methods to Nonlinear Differential Equations
52 rdf:type schema:Book
53 Nc809dfd019914d7698e35762ea1c1b09 schema:name doi
54 schema:value 10.1007/978-94-011-2082-1_6
55 rdf:type schema:PropertyValue
56 Ne81314e566254632919d214ca88cc4ea rdf:first sg:person.014121444104.73
57 rdf:rest N78068d1384e44094b12cfd8e4389aafa
58 Nf17c1044d5d6452a85809039f2cee63e schema:location Dordrecht
59 schema:name Springer Netherlands
60 rdf:type schema:Organisation
61 Nfa34be8ffd7d48dabb1e686dce2ef7a4 schema:name readcube_id
62 schema:value 83b21131cac080c05e07a901a9155697cf4c486ddcbf78d4d54ea4c19dd41d37
63 rdf:type schema:PropertyValue
64 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
65 schema:name Psychology and Cognitive Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
68 schema:name Psychology
69 rdf:type schema:DefinedTerm
70 sg:person.014121444104.73 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
71 schema:familyName Piette
72 schema:givenName B.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
74 rdf:type schema:Person
75 https://doi.org/10.1016/0550-3213(78)90432-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033308098
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1063/1.523400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058100420
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1088/0951-7715/3/2/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110631
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1088/0951-7715/3/3/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110650
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1088/0951-7715/5/2/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110748
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1098/rspa.1961.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037916716
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.1006.7 schema:alternateName Newcastle University
88 schema:name Department of Mathematical Sciences, The University, DH1 3LE, Durham, UK
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...