Extended Structures in (2 + 1) Dimensions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

B. Piette , W. J. Zakrzewski

ABSTRACT

We study extended structure solutions of the S2 sigma model and the corresponding Skyrme models in (2 + 1) dimensions. We review some results reported earlier and concentrate our attention on the process of annihilation of two such structures - one corresponding to a soliton like object and another to an antisoliton. We find that the process of annihilation proceeds in three stages; the initial approach, then rapid annihilation of the soliton cores followed slow annihilation of the soliton tails. More... »

PAGES

47-63

Book

TITLE

Applications of Analytic and Geometric Methods to Nonlinear Differential Equations

ISBN

978-94-010-4924-5
978-94-011-2082-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6

DOI

http://dx.doi.org/10.1007/978-94-011-2082-1_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027645191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, The University, DH1 3LE, Durham, UK", 
          "id": "http://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "Department of Mathematical Sciences, The University, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piette", 
        "givenName": "B.", 
        "id": "sg:person.014121444104.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, The University, DH1 3LE, Durham, UK", 
          "id": "http://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "Department of Mathematical Sciences, The University, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zakrzewski", 
        "givenName": "W. J.", 
        "id": "sg:person.014640770123.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "We study extended structure solutions of the S2 sigma model and the corresponding Skyrme models in (2 + 1) dimensions. We review some results reported earlier and concentrate our attention on the process of annihilation of two such structures - one corresponding to a soliton like object and another to an antisoliton. We find that the process of annihilation proceeds in three stages; the initial approach, then rapid annihilation of the soliton cores followed slow annihilation of the soliton tails.", 
    "editor": [
      {
        "familyName": "Clarkson", 
        "givenName": "Peter A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-2082-1_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-4924-5", 
        "978-94-011-2082-1"
      ], 
      "name": "Applications of Analytic and Geometric Methods to Nonlinear Differential Equations", 
      "type": "Book"
    }, 
    "keywords": [
      "model", 
      "dimensions", 
      "results", 
      "attention", 
      "process", 
      "objects", 
      "proceeds", 
      "stage", 
      "initial approach", 
      "approach", 
      "structure", 
      "extended structure solutions", 
      "structure solution", 
      "solution", 
      "S2 sigma model", 
      "sigma model", 
      "corresponding Skyrme models", 
      "Skyrme model", 
      "process of annihilation", 
      "annihilation", 
      "solitons", 
      "antisolitons", 
      "annihilation proceeds", 
      "rapid annihilation", 
      "soliton core", 
      "core", 
      "slow annihilation", 
      "extended structure"
    ], 
    "name": "Extended Structures in (2 + 1) Dimensions", 
    "pagination": "47-63", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027645191"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-2082-1_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-2082-1_6", 
      "https://app.dimensions.ai/details/publication/pub.1027645191"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_45.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-011-2082-1_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2082-1_6'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      54 URIs      47 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-2082-1_6 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nac7de7f2a45c4bcba660963ad1c1867b
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description We study extended structure solutions of the S2 sigma model and the corresponding Skyrme models in (2 + 1) dimensions. We review some results reported earlier and concentrate our attention on the process of annihilation of two such structures - one corresponding to a soliton like object and another to an antisoliton. We find that the process of annihilation proceeds in three stages; the initial approach, then rapid annihilation of the soliton cores followed slow annihilation of the soliton tails.
7 schema:editor N2a0c8b38c2e3478d93e31c7bd6b35c99
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N486837b9190d434c9e8d7cb72cc36c35
12 schema:keywords S2 sigma model
13 Skyrme model
14 annihilation
15 annihilation proceeds
16 antisolitons
17 approach
18 attention
19 core
20 corresponding Skyrme models
21 dimensions
22 extended structure
23 extended structure solutions
24 initial approach
25 model
26 objects
27 proceeds
28 process
29 process of annihilation
30 rapid annihilation
31 results
32 sigma model
33 slow annihilation
34 soliton core
35 solitons
36 solution
37 stage
38 structure
39 structure solution
40 schema:name Extended Structures in (2 + 1) Dimensions
41 schema:pagination 47-63
42 schema:productId N16473823d60544658e00145738d593aa
43 N7bb6bc7456bf4e2894bd7556f5feb228
44 schema:publisher Na4e29b20cd36489cb26f856c042001f0
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027645191
46 https://doi.org/10.1007/978-94-011-2082-1_6
47 schema:sdDatePublished 2021-12-01T20:10
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nbc38b5d15b1b4e7aabf1e1fd326fa9b7
50 schema:url https://doi.org/10.1007/978-94-011-2082-1_6
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N16473823d60544658e00145738d593aa schema:name doi
55 schema:value 10.1007/978-94-011-2082-1_6
56 rdf:type schema:PropertyValue
57 N2a0c8b38c2e3478d93e31c7bd6b35c99 rdf:first N771213ca041a4ad88417a5bca153720d
58 rdf:rest rdf:nil
59 N486837b9190d434c9e8d7cb72cc36c35 schema:isbn 978-94-010-4924-5
60 978-94-011-2082-1
61 schema:name Applications of Analytic and Geometric Methods to Nonlinear Differential Equations
62 rdf:type schema:Book
63 N49ebd79182ff46c59a19837dbc1df199 rdf:first sg:person.014640770123.34
64 rdf:rest rdf:nil
65 N771213ca041a4ad88417a5bca153720d schema:familyName Clarkson
66 schema:givenName Peter A.
67 rdf:type schema:Person
68 N7bb6bc7456bf4e2894bd7556f5feb228 schema:name dimensions_id
69 schema:value pub.1027645191
70 rdf:type schema:PropertyValue
71 Na4e29b20cd36489cb26f856c042001f0 schema:name Springer Nature
72 rdf:type schema:Organisation
73 Nac7de7f2a45c4bcba660963ad1c1867b rdf:first sg:person.014121444104.73
74 rdf:rest N49ebd79182ff46c59a19837dbc1df199
75 Nbc38b5d15b1b4e7aabf1e1fd326fa9b7 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
78 schema:name Psychology and Cognitive Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
81 schema:name Psychology
82 rdf:type schema:DefinedTerm
83 sg:person.014121444104.73 schema:affiliation grid-institutes:grid.1006.7
84 schema:familyName Piette
85 schema:givenName B.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
87 rdf:type schema:Person
88 sg:person.014640770123.34 schema:affiliation grid-institutes:grid.1006.7
89 schema:familyName Zakrzewski
90 schema:givenName W. J.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34
92 rdf:type schema:Person
93 grid-institutes:grid.1006.7 schema:alternateName Department of Mathematical Sciences, The University, DH1 3LE, Durham, UK
94 schema:name Department of Mathematical Sciences, The University, DH1 3LE, Durham, UK
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...