Applications of the Generalized Symmetry Method View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

G. Baumann

ABSTRACT

In the following we shall demonstrate the applications of the genaralized symmetry method on two ions in a trap, the Hénon Heiles model, and a system of nonlinear quartic oscillators. The method of deriving generalized symmetries is reviewed and the construction of integrals of motion is demonstrated. The conditions of integrability follow as side conditions from the determining equations for the generalized characteristics in which cases the corresponding integrals of motion are derivable. The generalized symmetry analysis is supported by a Mathematica program called LieBaecklund. More... »

PAGES

43-53

Book

TITLE

Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics

ISBN

978-94-010-4908-5
978-94-011-2050-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-2050-0_5

DOI

http://dx.doi.org/10.1007/978-94-011-2050-0_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033455959


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Abteilung f\u00fcr Mathematische Physik, Universit\u00e4t Ulm, Albert-Einstein-Allee 11, D-7900, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumann", 
        "givenName": "G.", 
        "id": "sg:person.01247751074.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01444068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012414683", 
          "https://doi.org/10.1007/bf01444068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0274-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028297537", 
          "https://doi.org/10.1007/978-1-4684-0274-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0274-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028297537", 
          "https://doi.org/10.1007/978-1-4684-0274-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/334309a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042949751", 
          "https://doi.org/10.1038/334309a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1046692019", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4307-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046692019", 
          "https://doi.org/10.1007/978-1-4757-4307-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4307-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046692019", 
          "https://doi.org/10.1007/978-1-4757-4307-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4307-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046692019", 
          "https://doi.org/10.1007/978-1-4757-4307-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797975"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "In the following we shall demonstrate the applications of the genaralized symmetry method on two ions in a trap, the H\u00e9non Heiles model, and a system of nonlinear quartic oscillators. The method of deriving generalized symmetries is reviewed and the construction of integrals of motion is demonstrated. The conditions of integrability follow as side conditions from the determining equations for the generalized characteristics in which cases the corresponding integrals of motion are derivable. The generalized symmetry analysis is supported by a Mathematica program called LieBaecklund.", 
    "editor": [
      {
        "familyName": "Ibragimov", 
        "givenName": "N. H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Torrisi", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Valenti", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-2050-0_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-4908-5", 
        "978-94-011-2050-0"
      ], 
      "name": "Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics", 
      "type": "Book"
    }, 
    "name": "Applications of the Generalized Symmetry Method", 
    "pagination": "43-53", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033455959"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-2050-0_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f607845c46af9364bf7d1c38e1b282dbed1d2b86ad163c5d8b97751f89691ed"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-2050-0_5", 
      "https://app.dimensions.ai/details/publication/pub.1033455959"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68980_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-2050-0_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2050-0_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2050-0_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2050-0_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-2050-0_5'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-2050-0_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9c461a6c3ac843dcbefaa9458db7b419
4 schema:citation sg:pub.10.1007/978-1-4684-0274-2
5 sg:pub.10.1007/978-1-4757-4307-4
6 sg:pub.10.1007/bf01444068
7 sg:pub.10.1038/334309a0
8 https://app.dimensions.ai/details/publication/pub.1046692019
9 https://doi.org/10.1103/physreva.40.808
10 https://doi.org/10.1103/physrevlett.61.255
11 schema:datePublished 1993
12 schema:datePublishedReg 1993-01-01
13 schema:description In the following we shall demonstrate the applications of the genaralized symmetry method on two ions in a trap, the Hénon Heiles model, and a system of nonlinear quartic oscillators. The method of deriving generalized symmetries is reviewed and the construction of integrals of motion is demonstrated. The conditions of integrability follow as side conditions from the determining equations for the generalized characteristics in which cases the corresponding integrals of motion are derivable. The generalized symmetry analysis is supported by a Mathematica program called LieBaecklund.
14 schema:editor N72a8b692bd28474eb09958bf08daa1eb
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N78a5e168ba7a4bda89359f349ef5b50b
19 schema:name Applications of the Generalized Symmetry Method
20 schema:pagination 43-53
21 schema:productId N28fee0357f4f421b829b8d50e9af0624
22 N3ff8a22fdb444fc09079533da31f97a4
23 N6d796b5de6704361b7cd8c24ce70a293
24 schema:publisher N65656bd197364945bf083e21d7aac72f
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033455959
26 https://doi.org/10.1007/978-94-011-2050-0_5
27 schema:sdDatePublished 2019-04-16T08:59
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N815c0f52f4034de88dfe9b3e33bb590c
30 schema:url https://link.springer.com/10.1007%2F978-94-011-2050-0_5
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N2687df0a9b2b4bc89b1e022427798d6f schema:familyName Valenti
35 schema:givenName A.
36 rdf:type schema:Person
37 N28fee0357f4f421b829b8d50e9af0624 schema:name dimensions_id
38 schema:value pub.1033455959
39 rdf:type schema:PropertyValue
40 N3404db95ac63485abbfd5c1593ffe068 schema:familyName Ibragimov
41 schema:givenName N. H.
42 rdf:type schema:Person
43 N3ff8a22fdb444fc09079533da31f97a4 schema:name readcube_id
44 schema:value 9f607845c46af9364bf7d1c38e1b282dbed1d2b86ad163c5d8b97751f89691ed
45 rdf:type schema:PropertyValue
46 N443705ccefeb4156bf29ad43608f79bc rdf:first Nddb538acb5d143aebc107d258082914a
47 rdf:rest Ne171073657634549830cd02b38c9b773
48 N65656bd197364945bf083e21d7aac72f schema:location Dordrecht
49 schema:name Springer Netherlands
50 rdf:type schema:Organisation
51 N6d796b5de6704361b7cd8c24ce70a293 schema:name doi
52 schema:value 10.1007/978-94-011-2050-0_5
53 rdf:type schema:PropertyValue
54 N72a8b692bd28474eb09958bf08daa1eb rdf:first N3404db95ac63485abbfd5c1593ffe068
55 rdf:rest N443705ccefeb4156bf29ad43608f79bc
56 N78a5e168ba7a4bda89359f349ef5b50b schema:isbn 978-94-010-4908-5
57 978-94-011-2050-0
58 schema:name Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics
59 rdf:type schema:Book
60 N815c0f52f4034de88dfe9b3e33bb590c schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N9c461a6c3ac843dcbefaa9458db7b419 rdf:first sg:person.01247751074.51
63 rdf:rest rdf:nil
64 Nddb538acb5d143aebc107d258082914a schema:familyName Torrisi
65 schema:givenName M.
66 rdf:type schema:Person
67 Ne171073657634549830cd02b38c9b773 rdf:first N2687df0a9b2b4bc89b1e022427798d6f
68 rdf:rest rdf:nil
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:person.01247751074.51 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
76 schema:familyName Baumann
77 schema:givenName G.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51
79 rdf:type schema:Person
80 sg:pub.10.1007/978-1-4684-0274-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028297537
81 https://doi.org/10.1007/978-1-4684-0274-2
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/978-1-4757-4307-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046692019
84 https://doi.org/10.1007/978-1-4757-4307-4
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01444068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012414683
87 https://doi.org/10.1007/bf01444068
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/334309a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042949751
90 https://doi.org/10.1038/334309a0
91 rdf:type schema:CreativeWork
92 https://app.dimensions.ai/details/publication/pub.1046692019 schema:CreativeWork
93 https://doi.org/10.1103/physreva.40.808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480775
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevlett.61.255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797975
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
98 schema:name Abteilung für Mathematische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-7900, Ulm, Germany
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...