Analytical Results for the Maximal Lyapunov Exponent View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

Roberto Livi , Antonio Politi , Stefano Ruffo

ABSTRACT

We study analytically the maximal Lyapunov exponent for coupled chaotic map lattices and for products of random Jacobi matrices. To this purpose we develop a mean-field treatment inspired by the theory of directed polymers in a random medium. In particular, we investigate the limit of vanishing coupling strength ε, extending previous results obtained for 2×2 matrices. A phase transition is also predicted at a critical value of the coupling εc, which is not observed in numerical simulations and might be an artifact of the approximation. More... »

PAGES

411-421

References to SciGraph publications

Book

TITLE

Cellular Automata and Cooperative Systems

ISBN

978-94-010-4740-1
978-94-011-1691-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-1691-6_33

DOI

http://dx.doi.org/10.1007/978-94-011-1691-6_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043115569


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Sezione INFN and Unit\u00e1 INFM di Firenze \u2014 Italy, Dipartimento di Fisica Universit\u00e1 di Firenze, Largo E. Fermi 2, I-50125, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livi", 
        "givenName": "Roberto", 
        "id": "sg:person.0772676522.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sezione INFN and Unit\u00e1 INFM di Firenze \u2014 Italy, Instituto Nazionale di Ottica, Largo E. Fermi 6, I-50125, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Politi", 
        "givenName": "Antonio", 
        "id": "sg:person.013264105675.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sezione INFN and Unit\u00e1 INFM di Firenze \u2014 Italy, Dipartimento di Energetica Universit\u00e0 di Firenze, via S. Marta 2, I-50139, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruffo", 
        "givenName": "Stefano", 
        "id": "sg:person.01365701241.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01014363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016309401", 
          "https://doi.org/10.1007/bf01014363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01014886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019494097", 
          "https://doi.org/10.1007/bf01014886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(90)90373-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021583071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(90)90373-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021583071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(92)90560-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035412759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(92)90560-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035412759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90265-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049125123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90265-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049125123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/1/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059108662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.30.2047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.30.2047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.37.948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.37.948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.24.2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.24.2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.72.480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063139590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.74.1033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063139802"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "We study analytically the maximal Lyapunov exponent for coupled chaotic map lattices and for products of random Jacobi matrices. To this purpose we develop a mean-field treatment inspired by the theory of directed polymers in a random medium. In particular, we investigate the limit of vanishing coupling strength \u03b5, extending previous results obtained for 2\u00d72 matrices. A phase transition is also predicted at a critical value of the coupling \u03b5c, which is not observed in numerical simulations and might be an artifact of the approximation.", 
    "editor": [
      {
        "familyName": "Boccara", 
        "givenName": "Nino", 
        "type": "Person"
      }, 
      {
        "familyName": "Goles", 
        "givenName": "Eric", 
        "type": "Person"
      }, 
      {
        "familyName": "Martinez", 
        "givenName": "Servet", 
        "type": "Person"
      }, 
      {
        "familyName": "Picco", 
        "givenName": "Pierre", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-1691-6_33", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-4740-1", 
        "978-94-011-1691-6"
      ], 
      "name": "Cellular Automata and Cooperative Systems", 
      "type": "Book"
    }, 
    "name": "Analytical Results for the Maximal Lyapunov Exponent", 
    "pagination": "411-421", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043115569"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-1691-6_33"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd5fa178e78fdbadbf61b600df129f559fec344769b62f1521a284aef5c294e0"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-1691-6_33", 
      "https://app.dimensions.ai/details/publication/pub.1043115569"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-1691-6_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1691-6_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1691-6_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1691-6_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1691-6_33'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-1691-6_33 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N03ccf06b46e647efb0e6d9e18fcb1af6
4 schema:citation sg:pub.10.1007/bf01014363
5 sg:pub.10.1007/bf01014886
6 https://doi.org/10.1016/0375-9601(87)90265-9
7 https://doi.org/10.1016/0375-9601(90)90373-v
8 https://doi.org/10.1016/0375-9601(92)90560-9
9 https://doi.org/10.1088/0951-7715/1/4/001
10 https://doi.org/10.1103/physreva.30.2047
11 https://doi.org/10.1103/physreva.37.948
12 https://doi.org/10.1103/physrevb.24.2613
13 https://doi.org/10.1143/ptp.72.480
14 https://doi.org/10.1143/ptp.74.1033
15 schema:datePublished 1993
16 schema:datePublishedReg 1993-01-01
17 schema:description We study analytically the maximal Lyapunov exponent for coupled chaotic map lattices and for products of random Jacobi matrices. To this purpose we develop a mean-field treatment inspired by the theory of directed polymers in a random medium. In particular, we investigate the limit of vanishing coupling strength ε, extending previous results obtained for 2×2 matrices. A phase transition is also predicted at a critical value of the coupling εc, which is not observed in numerical simulations and might be an artifact of the approximation.
18 schema:editor N1d7000cc40834343ac3337dc79239c91
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N6ced7200e98a4355875599f8a0980233
23 schema:name Analytical Results for the Maximal Lyapunov Exponent
24 schema:pagination 411-421
25 schema:productId N0fea2f1b2aa5477aa29efeccbe3a2924
26 N641822275a064c628d9f0f32463c9655
27 Nb47a4ff1b1174a5fa706aef84df86fca
28 schema:publisher N6866dbc73d0d44008fd9ed3f8097d338
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043115569
30 https://doi.org/10.1007/978-94-011-1691-6_33
31 schema:sdDatePublished 2019-04-16T09:03
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N6605739ba3524b0f803e411820485255
34 schema:url https://link.springer.com/10.1007%2F978-94-011-1691-6_33
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N03ccf06b46e647efb0e6d9e18fcb1af6 rdf:first sg:person.0772676522.84
39 rdf:rest N23da289c72024c92b1000ee8ffdd95fa
40 N05456ef381774de5a96fc9c5ea297e46 schema:name Sezione INFN and Unitá INFM di Firenze — Italy, Instituto Nazionale di Ottica, Largo E. Fermi 6, I-50125, Firenze, Italy
41 rdf:type schema:Organization
42 N0fea2f1b2aa5477aa29efeccbe3a2924 schema:name dimensions_id
43 schema:value pub.1043115569
44 rdf:type schema:PropertyValue
45 N1d7000cc40834343ac3337dc79239c91 rdf:first N2453570717e44a33ba5bc0e625a9d9d5
46 rdf:rest N340203e033894b6cb479cebb2f421133
47 N23da289c72024c92b1000ee8ffdd95fa rdf:first sg:person.013264105675.78
48 rdf:rest Na839ca8c7f8247078f6d25a1e773c855
49 N2453570717e44a33ba5bc0e625a9d9d5 schema:familyName Boccara
50 schema:givenName Nino
51 rdf:type schema:Person
52 N306cb3424b9440508a7e9b0d4bc91434 schema:name Sezione INFN and Unitá INFM di Firenze — Italy, Dipartimento di Energetica Università di Firenze, via S. Marta 2, I-50139, Firenze, Italy
53 rdf:type schema:Organization
54 N340203e033894b6cb479cebb2f421133 rdf:first Nfc5923d24834410693f5614aff520535
55 rdf:rest Nb5399fc5ee254fc7b9a8189e370587eb
56 N641822275a064c628d9f0f32463c9655 schema:name readcube_id
57 schema:value cd5fa178e78fdbadbf61b600df129f559fec344769b62f1521a284aef5c294e0
58 rdf:type schema:PropertyValue
59 N6605739ba3524b0f803e411820485255 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N6866dbc73d0d44008fd9ed3f8097d338 schema:location Dordrecht
62 schema:name Springer Netherlands
63 rdf:type schema:Organisation
64 N6ced7200e98a4355875599f8a0980233 schema:isbn 978-94-010-4740-1
65 978-94-011-1691-6
66 schema:name Cellular Automata and Cooperative Systems
67 rdf:type schema:Book
68 N73b8eb6982594c56b2f44d2be125dd82 schema:familyName Martinez
69 schema:givenName Servet
70 rdf:type schema:Person
71 N9fb38b491fa04691841fcbb9c5e12066 schema:name Sezione INFN and Unitá INFM di Firenze — Italy, Dipartimento di Fisica Universitá di Firenze, Largo E. Fermi 2, I-50125, Firenze, Italy
72 rdf:type schema:Organization
73 Na839ca8c7f8247078f6d25a1e773c855 rdf:first sg:person.01365701241.87
74 rdf:rest rdf:nil
75 Nb47a4ff1b1174a5fa706aef84df86fca schema:name doi
76 schema:value 10.1007/978-94-011-1691-6_33
77 rdf:type schema:PropertyValue
78 Nb5399fc5ee254fc7b9a8189e370587eb rdf:first N73b8eb6982594c56b2f44d2be125dd82
79 rdf:rest Nc0f9bfb4c09447ada0d7f71a53c3880f
80 Nc0f9bfb4c09447ada0d7f71a53c3880f rdf:first Nd664c7abc8d44ca0b0ab54d9079149b9
81 rdf:rest rdf:nil
82 Nd664c7abc8d44ca0b0ab54d9079149b9 schema:familyName Picco
83 schema:givenName Pierre
84 rdf:type schema:Person
85 Nfc5923d24834410693f5614aff520535 schema:familyName Goles
86 schema:givenName Eric
87 rdf:type schema:Person
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
92 schema:name Statistics
93 rdf:type schema:DefinedTerm
94 sg:person.013264105675.78 schema:affiliation N05456ef381774de5a96fc9c5ea297e46
95 schema:familyName Politi
96 schema:givenName Antonio
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78
98 rdf:type schema:Person
99 sg:person.01365701241.87 schema:affiliation N306cb3424b9440508a7e9b0d4bc91434
100 schema:familyName Ruffo
101 schema:givenName Stefano
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87
103 rdf:type schema:Person
104 sg:person.0772676522.84 schema:affiliation N9fb38b491fa04691841fcbb9c5e12066
105 schema:familyName Livi
106 schema:givenName Roberto
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84
108 rdf:type schema:Person
109 sg:pub.10.1007/bf01014363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016309401
110 https://doi.org/10.1007/bf01014363
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf01014886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019494097
113 https://doi.org/10.1007/bf01014886
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0375-9601(87)90265-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049125123
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0375-9601(90)90373-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1021583071
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0375-9601(92)90560-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035412759
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/0951-7715/1/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059108662
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physreva.30.2047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060472688
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreva.37.948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060477725
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.24.2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529350
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1143/ptp.72.480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063139590
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1143/ptp.74.1033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063139802
132 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...