1994
AUTHORSChristiane Froeschle , Alessandro Morbidelli
ABSTRACTIn the last three years new studies on secular resonances have been done. The second-order and fourth-degree secular perturbation theory of Milani and Knežević allowed to point out the effect of mean motion resonances on the location of the linear and non linear secular resonances. Moreover this theory improved the knowledge of the exact location of the g = g6 (i.e. v6) resonance at low inclination. Morbidelli and Henrard revisited the semi-numerical method of Williams, taking into account the quadratic terms in the perturbing masses. They computed not only the location of secular resonances, but also provided a global description of the resonant dynamics in the main secular resonances namely g = g5 (i.e. v5), g = g6 (i.e. v6) and s = s6 (i.e. v16). The resonant proper element algorithm developed by Morbidelli allows to identify the dynamical nature of resonant objects, and is a powerful tool to study the mechanisms of meteorite transport to the inner Solar System. Purely numerical experiments have been done, which show : (i) the complexity of the dynamics when two resonances overlap; (ii) the efficiency of successive crossings of non linear resonances in pumping up the inclination of small bodies; (iii) the efficiency of the secular resonance v6 as a source of meteorites up to 2.4 AU. More... »
PAGES189-204
Asteroids, Comets, Meteors 1993
ISBN
978-0-7923-2881-0
978-94-011-1148-5
http://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14
DOIhttp://dx.doi.org/10.1007/978-94-011-1148-5_14
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005070303
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "O.C.A.Laboratoire G.D. Cassini, CNRS URA 1362, B.P.229, F-06304, Nice Cedex 4, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"O.C.A.Laboratoire G.D. Cassini, CNRS URA 1362, B.P.229, F-06304, Nice Cedex 4, France"
],
"type": "Organization"
},
"familyName": "Froeschle",
"givenName": "Christiane",
"id": "sg:person.013202724547.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "O.C.A.Laboratoire Cerga, CNRS URA 1360, B.P.229, F-06304, Nice Cedex 4, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"O.C.A.Laboratoire Cerga, CNRS URA 1360, B.P.229, F-06304, Nice Cedex 4, France"
],
"type": "Organization"
},
"familyName": "Morbidelli",
"givenName": "Alessandro",
"id": "sg:person.0742130574.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742130574.53"
],
"type": "Person"
}
],
"datePublished": "1994",
"datePublishedReg": "1994-01-01",
"description": "In the last three years new studies on secular resonances have been done. The second-order and fourth-degree secular perturbation theory of Milani and Kne\u017eevi\u0107 allowed to point out the effect of mean motion resonances on the location of the linear and non linear secular resonances. Moreover this theory improved the knowledge of the exact location of the g = g6 (i.e. v6) resonance at low inclination. Morbidelli and Henrard revisited the semi-numerical method of Williams, taking into account the quadratic terms in the perturbing masses. They computed not only the location of secular resonances, but also provided a global description of the resonant dynamics in the main secular resonances namely g = g5 (i.e. v5), g = g6 (i.e. v6) and s = s6 (i.e. v16). The resonant proper element algorithm developed by Morbidelli allows to identify the dynamical nature of resonant objects, and is a powerful tool to study the mechanisms of meteorite transport to the inner Solar System. Purely numerical experiments have been done, which show : (i) the complexity of the dynamics when two resonances overlap; (ii) the efficiency of successive crossings of non linear resonances in pumping up the inclination of small bodies; (iii) the efficiency of the secular resonance v6 as a source of meteorites up to 2.4 AU.",
"editor": [
{
"familyName": "Milani",
"givenName": "A.",
"type": "Person"
},
{
"familyName": "Di Martino",
"givenName": "M.",
"type": "Person"
},
{
"familyName": "Cellino",
"givenName": "A.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-011-1148-5_14",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-0-7923-2881-0",
"978-94-011-1148-5"
],
"name": "Asteroids, Comets, Meteors 1993",
"type": "Book"
},
"keywords": [
"secular resonances",
"main secular resonances",
"secular perturbation theory",
"source of meteorites",
"linear secular resonances",
"semi-numerical method",
"non-linear resonances",
"mean motion resonance",
"solar system",
"resonant dynamics",
"meteorite transport",
"dynamical nature",
"linear resonance",
"numerical experiments",
"years new studies",
"perturbation theory",
"motion resonance",
"inner solar system",
"quadratic terms",
"element algorithm",
"global description",
"resonant objects",
"successive crossings",
"Morbidelli",
"theory",
"dynamics",
"small bodies",
"low inclination",
"powerful tool",
"Kne\u017eevi\u0107",
"resonance",
"Milani",
"algorithm",
"system",
"complexity",
"Henrard",
"description",
"inclination",
"efficiency",
"objects",
"terms",
"account",
"crossing",
"exact location",
"transport",
"location",
"tool",
"experiments",
"meteorites",
"Au",
"nature",
"mass",
"source",
"Williams",
"effect",
"new studies",
"body",
"knowledge",
"study",
"mechanism",
"method",
"V6",
"G6",
"S6",
"G5"
],
"name": "The Secular Resonances in the Solar System",
"pagination": "189-204",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005070303"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-011-1148-5_14"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-011-1148-5_14",
"https://app.dimensions.ai/details/publication/pub.1005070303"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_452.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-94-011-1148-5_14"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
23 PREDICATES
91 URIs
84 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-94-011-1148-5_14 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Nc0f3cea0009d4fb6ac652ba78ed07652 |
4 | ″ | schema:datePublished | 1994 |
5 | ″ | schema:datePublishedReg | 1994-01-01 |
6 | ″ | schema:description | In the last three years new studies on secular resonances have been done. The second-order and fourth-degree secular perturbation theory of Milani and Knežević allowed to point out the effect of mean motion resonances on the location of the linear and non linear secular resonances. Moreover this theory improved the knowledge of the exact location of the g = g6 (i.e. v6) resonance at low inclination. Morbidelli and Henrard revisited the semi-numerical method of Williams, taking into account the quadratic terms in the perturbing masses. They computed not only the location of secular resonances, but also provided a global description of the resonant dynamics in the main secular resonances namely g = g5 (i.e. v5), g = g6 (i.e. v6) and s = s6 (i.e. v16). The resonant proper element algorithm developed by Morbidelli allows to identify the dynamical nature of resonant objects, and is a powerful tool to study the mechanisms of meteorite transport to the inner Solar System. Purely numerical experiments have been done, which show : (i) the complexity of the dynamics when two resonances overlap; (ii) the efficiency of successive crossings of non linear resonances in pumping up the inclination of small bodies; (iii) the efficiency of the secular resonance v6 as a source of meteorites up to 2.4 AU. |
7 | ″ | schema:editor | Neac7dc4e3af0471d9a053c5b74199191 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nf056067e272b47a09b9e3bc43c978264 |
12 | ″ | schema:keywords | Au |
13 | ″ | ″ | G5 |
14 | ″ | ″ | G6 |
15 | ″ | ″ | Henrard |
16 | ″ | ″ | Knežević |
17 | ″ | ″ | Milani |
18 | ″ | ″ | Morbidelli |
19 | ″ | ″ | S6 |
20 | ″ | ″ | V6 |
21 | ″ | ″ | Williams |
22 | ″ | ″ | account |
23 | ″ | ″ | algorithm |
24 | ″ | ″ | body |
25 | ″ | ″ | complexity |
26 | ″ | ″ | crossing |
27 | ″ | ″ | description |
28 | ″ | ″ | dynamical nature |
29 | ″ | ″ | dynamics |
30 | ″ | ″ | effect |
31 | ″ | ″ | efficiency |
32 | ″ | ″ | element algorithm |
33 | ″ | ″ | exact location |
34 | ″ | ″ | experiments |
35 | ″ | ″ | global description |
36 | ″ | ″ | inclination |
37 | ″ | ″ | inner solar system |
38 | ″ | ″ | knowledge |
39 | ″ | ″ | linear resonance |
40 | ″ | ″ | linear secular resonances |
41 | ″ | ″ | location |
42 | ″ | ″ | low inclination |
43 | ″ | ″ | main secular resonances |
44 | ″ | ″ | mass |
45 | ″ | ″ | mean motion resonance |
46 | ″ | ″ | mechanism |
47 | ″ | ″ | meteorite transport |
48 | ″ | ″ | meteorites |
49 | ″ | ″ | method |
50 | ″ | ″ | motion resonance |
51 | ″ | ″ | nature |
52 | ″ | ″ | new studies |
53 | ″ | ″ | non-linear resonances |
54 | ″ | ″ | numerical experiments |
55 | ″ | ″ | objects |
56 | ″ | ″ | perturbation theory |
57 | ″ | ″ | powerful tool |
58 | ″ | ″ | quadratic terms |
59 | ″ | ″ | resonance |
60 | ″ | ″ | resonant dynamics |
61 | ″ | ″ | resonant objects |
62 | ″ | ″ | secular perturbation theory |
63 | ″ | ″ | secular resonances |
64 | ″ | ″ | semi-numerical method |
65 | ″ | ″ | small bodies |
66 | ″ | ″ | solar system |
67 | ″ | ″ | source |
68 | ″ | ″ | source of meteorites |
69 | ″ | ″ | study |
70 | ″ | ″ | successive crossings |
71 | ″ | ″ | system |
72 | ″ | ″ | terms |
73 | ″ | ″ | theory |
74 | ″ | ″ | tool |
75 | ″ | ″ | transport |
76 | ″ | ″ | years new studies |
77 | ″ | schema:name | The Secular Resonances in the Solar System |
78 | ″ | schema:pagination | 189-204 |
79 | ″ | schema:productId | N23b5ee381f304835a73cbf0bdcfaa69b |
80 | ″ | ″ | Na8b9a14bbdde404aaf646bb843bf9210 |
81 | ″ | schema:publisher | N8381ad23b7ac48dfab5c51951f54e748 |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005070303 |
83 | ″ | ″ | https://doi.org/10.1007/978-94-011-1148-5_14 |
84 | ″ | schema:sdDatePublished | 2022-05-10T10:54 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | N588438f4ebd747679ba47c3dd956e44f |
87 | ″ | schema:url | https://doi.org/10.1007/978-94-011-1148-5_14 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | chapters |
90 | ″ | rdf:type | schema:Chapter |
91 | N11bbd043b340456caab1049f6c056495 | schema:familyName | Cellino |
92 | ″ | schema:givenName | A. |
93 | ″ | rdf:type | schema:Person |
94 | N1fb458f6505c4f2f87a78be773cb55b1 | schema:familyName | Di Martino |
95 | ″ | schema:givenName | M. |
96 | ″ | rdf:type | schema:Person |
97 | N23b5ee381f304835a73cbf0bdcfaa69b | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1005070303 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N31cec37e1e68475c86cdc9be827ab4f1 | schema:familyName | Milani |
101 | ″ | schema:givenName | A. |
102 | ″ | rdf:type | schema:Person |
103 | N46a8c22b125a4b1c82149bb74277c00f | rdf:first | sg:person.0742130574.53 |
104 | ″ | rdf:rest | rdf:nil |
105 | N588438f4ebd747679ba47c3dd956e44f | schema:name | Springer Nature - SN SciGraph project |
106 | ″ | rdf:type | schema:Organization |
107 | N7a2cf2f0ec6542b5adcf6d0ede999afe | rdf:first | N1fb458f6505c4f2f87a78be773cb55b1 |
108 | ″ | rdf:rest | Nd3de8fd4d7f047aab11e4f4fe0b85cf5 |
109 | N8381ad23b7ac48dfab5c51951f54e748 | schema:name | Springer Nature |
110 | ″ | rdf:type | schema:Organisation |
111 | Na8b9a14bbdde404aaf646bb843bf9210 | schema:name | doi |
112 | ″ | schema:value | 10.1007/978-94-011-1148-5_14 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | Nc0f3cea0009d4fb6ac652ba78ed07652 | rdf:first | sg:person.013202724547.45 |
115 | ″ | rdf:rest | N46a8c22b125a4b1c82149bb74277c00f |
116 | Nd3de8fd4d7f047aab11e4f4fe0b85cf5 | rdf:first | N11bbd043b340456caab1049f6c056495 |
117 | ″ | rdf:rest | rdf:nil |
118 | Neac7dc4e3af0471d9a053c5b74199191 | rdf:first | N31cec37e1e68475c86cdc9be827ab4f1 |
119 | ″ | rdf:rest | N7a2cf2f0ec6542b5adcf6d0ede999afe |
120 | Nf056067e272b47a09b9e3bc43c978264 | schema:isbn | 978-0-7923-2881-0 |
121 | ″ | ″ | 978-94-011-1148-5 |
122 | ″ | schema:name | Asteroids, Comets, Meteors 1993 |
123 | ″ | rdf:type | schema:Book |
124 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Mathematical Sciences |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Pure Mathematics |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | sg:person.013202724547.45 | schema:affiliation | grid-institutes:None |
131 | ″ | schema:familyName | Froeschle |
132 | ″ | schema:givenName | Christiane |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.0742130574.53 | schema:affiliation | grid-institutes:None |
136 | ″ | schema:familyName | Morbidelli |
137 | ″ | schema:givenName | Alessandro |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742130574.53 |
139 | ″ | rdf:type | schema:Person |
140 | grid-institutes:None | schema:alternateName | O.C.A.Laboratoire Cerga, CNRS URA 1360, B.P.229, F-06304, Nice Cedex 4, France |
141 | ″ | ″ | O.C.A.Laboratoire G.D. Cassini, CNRS URA 1362, B.P.229, F-06304, Nice Cedex 4, France |
142 | ″ | schema:name | O.C.A.Laboratoire Cerga, CNRS URA 1360, B.P.229, F-06304, Nice Cedex 4, France |
143 | ″ | ″ | O.C.A.Laboratoire G.D. Cassini, CNRS URA 1362, B.P.229, F-06304, Nice Cedex 4, France |
144 | ″ | rdf:type | schema:Organization |