The Secular Resonances in the Solar System View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

Christiane Froeschle , Alessandro Morbidelli

ABSTRACT

In the last three years new studies on secular resonances have been done. The second-order and fourth-degree secular perturbation theory of Milani and Knežević allowed to point out the effect of mean motion resonances on the location of the linear and non linear secular resonances. Moreover this theory improved the knowledge of the exact location of the g = g6 (i.e. v6) resonance at low inclination. Morbidelli and Henrard revisited the semi-numerical method of Williams, taking into account the quadratic terms in the perturbing masses. They computed not only the location of secular resonances, but also provided a global description of the resonant dynamics in the main secular resonances namely g = g5 (i.e. v5), g = g6 (i.e. v6) and s = s6 (i.e. v16). The resonant proper element algorithm developed by Morbidelli allows to identify the dynamical nature of resonant objects, and is a powerful tool to study the mechanisms of meteorite transport to the inner Solar System. Purely numerical experiments have been done, which show : (i) the complexity of the dynamics when two resonances overlap; (ii) the efficiency of successive crossings of non linear resonances in pumping up the inclination of small bodies; (iii) the efficiency of the secular resonance v6 as a source of meteorites up to 2.4 AU. More... »

PAGES

189-204

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14

DOI

http://dx.doi.org/10.1007/978-94-011-1148-5_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005070303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "O.C.A.Laboratoire G.D. Cassini, CNRS URA 1362, B.P.229, F-06304, Nice Cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "O.C.A.Laboratoire G.D. Cassini, CNRS URA 1362, B.P.229, F-06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Froeschle", 
        "givenName": "Christiane", 
        "id": "sg:person.013202724547.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "O.C.A.Laboratoire Cerga, CNRS URA 1360, B.P.229, F-06304, Nice Cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "O.C.A.Laboratoire Cerga, CNRS URA 1360, B.P.229, F-06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morbidelli", 
        "givenName": "Alessandro", 
        "id": "sg:person.0742130574.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742130574.53"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "In the last three years new studies on secular resonances have been done. The second-order and fourth-degree secular perturbation theory of Milani and Kne\u017eevi\u0107 allowed to point out the effect of mean motion resonances on the location of the linear and non linear secular resonances. Moreover this theory improved the knowledge of the exact location of the g = g6 (i.e. v6) resonance at low inclination. Morbidelli and Henrard revisited the semi-numerical method of Williams, taking into account the quadratic terms in the perturbing masses. They computed not only the location of secular resonances, but also provided a global description of the resonant dynamics in the main secular resonances namely g = g5 (i.e. v5), g = g6 (i.e. v6) and s = s6 (i.e. v16). The resonant proper element algorithm developed by Morbidelli allows to identify the dynamical nature of resonant objects, and is a powerful tool to study the mechanisms of meteorite transport to the inner Solar System. Purely numerical experiments have been done, which show : (i) the complexity of the dynamics when two resonances overlap; (ii) the efficiency of successive crossings of non linear resonances in pumping up the inclination of small bodies; (iii) the efficiency of the secular resonance v6 as a source of meteorites up to 2.4 AU.", 
    "editor": [
      {
        "familyName": "Milani", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Di Martino", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Cellino", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-1148-5_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-7923-2881-0", 
        "978-94-011-1148-5"
      ], 
      "name": "Asteroids, Comets, Meteors 1993", 
      "type": "Book"
    }, 
    "keywords": [
      "secular resonances", 
      "main secular resonances", 
      "secular perturbation theory", 
      "source of meteorites", 
      "linear secular resonances", 
      "semi-numerical method", 
      "non-linear resonances", 
      "mean motion resonance", 
      "solar system", 
      "resonant dynamics", 
      "meteorite transport", 
      "dynamical nature", 
      "linear resonance", 
      "numerical experiments", 
      "years new studies", 
      "perturbation theory", 
      "motion resonance", 
      "inner solar system", 
      "quadratic terms", 
      "element algorithm", 
      "global description", 
      "resonant objects", 
      "successive crossings", 
      "Morbidelli", 
      "theory", 
      "dynamics", 
      "small bodies", 
      "low inclination", 
      "powerful tool", 
      "Kne\u017eevi\u0107", 
      "resonance", 
      "Milani", 
      "algorithm", 
      "system", 
      "complexity", 
      "Henrard", 
      "description", 
      "inclination", 
      "efficiency", 
      "objects", 
      "terms", 
      "account", 
      "crossing", 
      "exact location", 
      "transport", 
      "location", 
      "tool", 
      "experiments", 
      "meteorites", 
      "Au", 
      "nature", 
      "mass", 
      "source", 
      "Williams", 
      "effect", 
      "new studies", 
      "body", 
      "knowledge", 
      "study", 
      "mechanism", 
      "method", 
      "V6", 
      "G6", 
      "S6", 
      "G5"
    ], 
    "name": "The Secular Resonances in the Solar System", 
    "pagination": "189-204", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005070303"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-1148-5_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-1148-5_14", 
      "https://app.dimensions.ai/details/publication/pub.1005070303"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_452.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-011-1148-5_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1148-5_14'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      91 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-1148-5_14 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc0f3cea0009d4fb6ac652ba78ed07652
4 schema:datePublished 1994
5 schema:datePublishedReg 1994-01-01
6 schema:description In the last three years new studies on secular resonances have been done. The second-order and fourth-degree secular perturbation theory of Milani and Knežević allowed to point out the effect of mean motion resonances on the location of the linear and non linear secular resonances. Moreover this theory improved the knowledge of the exact location of the g = g6 (i.e. v6) resonance at low inclination. Morbidelli and Henrard revisited the semi-numerical method of Williams, taking into account the quadratic terms in the perturbing masses. They computed not only the location of secular resonances, but also provided a global description of the resonant dynamics in the main secular resonances namely g = g5 (i.e. v5), g = g6 (i.e. v6) and s = s6 (i.e. v16). The resonant proper element algorithm developed by Morbidelli allows to identify the dynamical nature of resonant objects, and is a powerful tool to study the mechanisms of meteorite transport to the inner Solar System. Purely numerical experiments have been done, which show : (i) the complexity of the dynamics when two resonances overlap; (ii) the efficiency of successive crossings of non linear resonances in pumping up the inclination of small bodies; (iii) the efficiency of the secular resonance v6 as a source of meteorites up to 2.4 AU.
7 schema:editor Neac7dc4e3af0471d9a053c5b74199191
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf056067e272b47a09b9e3bc43c978264
12 schema:keywords Au
13 G5
14 G6
15 Henrard
16 Knežević
17 Milani
18 Morbidelli
19 S6
20 V6
21 Williams
22 account
23 algorithm
24 body
25 complexity
26 crossing
27 description
28 dynamical nature
29 dynamics
30 effect
31 efficiency
32 element algorithm
33 exact location
34 experiments
35 global description
36 inclination
37 inner solar system
38 knowledge
39 linear resonance
40 linear secular resonances
41 location
42 low inclination
43 main secular resonances
44 mass
45 mean motion resonance
46 mechanism
47 meteorite transport
48 meteorites
49 method
50 motion resonance
51 nature
52 new studies
53 non-linear resonances
54 numerical experiments
55 objects
56 perturbation theory
57 powerful tool
58 quadratic terms
59 resonance
60 resonant dynamics
61 resonant objects
62 secular perturbation theory
63 secular resonances
64 semi-numerical method
65 small bodies
66 solar system
67 source
68 source of meteorites
69 study
70 successive crossings
71 system
72 terms
73 theory
74 tool
75 transport
76 years new studies
77 schema:name The Secular Resonances in the Solar System
78 schema:pagination 189-204
79 schema:productId N23b5ee381f304835a73cbf0bdcfaa69b
80 Na8b9a14bbdde404aaf646bb843bf9210
81 schema:publisher N8381ad23b7ac48dfab5c51951f54e748
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005070303
83 https://doi.org/10.1007/978-94-011-1148-5_14
84 schema:sdDatePublished 2022-05-10T10:54
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N588438f4ebd747679ba47c3dd956e44f
87 schema:url https://doi.org/10.1007/978-94-011-1148-5_14
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N11bbd043b340456caab1049f6c056495 schema:familyName Cellino
92 schema:givenName A.
93 rdf:type schema:Person
94 N1fb458f6505c4f2f87a78be773cb55b1 schema:familyName Di Martino
95 schema:givenName M.
96 rdf:type schema:Person
97 N23b5ee381f304835a73cbf0bdcfaa69b schema:name dimensions_id
98 schema:value pub.1005070303
99 rdf:type schema:PropertyValue
100 N31cec37e1e68475c86cdc9be827ab4f1 schema:familyName Milani
101 schema:givenName A.
102 rdf:type schema:Person
103 N46a8c22b125a4b1c82149bb74277c00f rdf:first sg:person.0742130574.53
104 rdf:rest rdf:nil
105 N588438f4ebd747679ba47c3dd956e44f schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N7a2cf2f0ec6542b5adcf6d0ede999afe rdf:first N1fb458f6505c4f2f87a78be773cb55b1
108 rdf:rest Nd3de8fd4d7f047aab11e4f4fe0b85cf5
109 N8381ad23b7ac48dfab5c51951f54e748 schema:name Springer Nature
110 rdf:type schema:Organisation
111 Na8b9a14bbdde404aaf646bb843bf9210 schema:name doi
112 schema:value 10.1007/978-94-011-1148-5_14
113 rdf:type schema:PropertyValue
114 Nc0f3cea0009d4fb6ac652ba78ed07652 rdf:first sg:person.013202724547.45
115 rdf:rest N46a8c22b125a4b1c82149bb74277c00f
116 Nd3de8fd4d7f047aab11e4f4fe0b85cf5 rdf:first N11bbd043b340456caab1049f6c056495
117 rdf:rest rdf:nil
118 Neac7dc4e3af0471d9a053c5b74199191 rdf:first N31cec37e1e68475c86cdc9be827ab4f1
119 rdf:rest N7a2cf2f0ec6542b5adcf6d0ede999afe
120 Nf056067e272b47a09b9e3bc43c978264 schema:isbn 978-0-7923-2881-0
121 978-94-011-1148-5
122 schema:name Asteroids, Comets, Meteors 1993
123 rdf:type schema:Book
124 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
125 schema:name Mathematical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
128 schema:name Pure Mathematics
129 rdf:type schema:DefinedTerm
130 sg:person.013202724547.45 schema:affiliation grid-institutes:None
131 schema:familyName Froeschle
132 schema:givenName Christiane
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202724547.45
134 rdf:type schema:Person
135 sg:person.0742130574.53 schema:affiliation grid-institutes:None
136 schema:familyName Morbidelli
137 schema:givenName Alessandro
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742130574.53
139 rdf:type schema:Person
140 grid-institutes:None schema:alternateName O.C.A.Laboratoire Cerga, CNRS URA 1360, B.P.229, F-06304, Nice Cedex 4, France
141 O.C.A.Laboratoire G.D. Cassini, CNRS URA 1362, B.P.229, F-06304, Nice Cedex 4, France
142 schema:name O.C.A.Laboratoire Cerga, CNRS URA 1360, B.P.229, F-06304, Nice Cedex 4, France
143 O.C.A.Laboratoire G.D. Cassini, CNRS URA 1362, B.P.229, F-06304, Nice Cedex 4, France
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...