Nonlinear Potential Theory and PDEs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

Tero Kilpeläinen

ABSTRACT

We consider equations like — div(∣∇u∣ p-2∇u) = µ, where µ is a nonnegative Radon measure and 1 < p < ∞. Results that relate the solution u and the measure µ are reviewed. A link between potential estimates and the boundary regularity of the Dirichlet problem is established.

PAGES

107-118

Book

TITLE

ICPT ’91

ISBN

978-94-010-4488-2
978-94-011-1118-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-1118-8_6

DOI

http://dx.doi.org/10.1007/978-94-011-1118-8_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021283794


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Jyv\u00e4skyl\u00e4", 
          "id": "https://www.grid.ac/institutes/grid.9681.6", 
          "name": [
            "Department of Mathematics, University of Jyv\u00e4skyl\u00e4, P.O. Box 35, 40351\u00a0Jyv\u00e4skyl\u00e4, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kilpel\u00e4inen", 
        "givenName": "Tero", 
        "id": "sg:person.011161247457.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00280825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004221339", 
          "https://doi.org/10.1007/bf00280825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00280825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004221339", 
          "https://doi.org/10.1007/bf00280825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1990-0998128-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013726451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019757244", 
          "https://doi.org/10.1007/bf02392541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1986.365.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037550402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02386110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046491329", 
          "https://doi.org/10.1007/bf02386110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02386110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046491329", 
          "https://doi.org/10.1007/bf02386110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(89)90005-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046529842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1983-0690040-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050552716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073136818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073139632"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "We consider equations like \u2014 div(\u2223\u2207u\u2223 p-2\u2207u) = \u00b5, where \u00b5 is a nonnegative Radon measure and 1 < p < \u221e. Results that relate the solution u and the measure \u00b5 are reviewed. A link between potential estimates and the boundary regularity of the Dirichlet problem is established.", 
    "editor": [
      {
        "familyName": "Bertin", 
        "givenName": "Emile", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-1118-8_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-4488-2", 
        "978-94-011-1118-8"
      ], 
      "name": "ICPT \u201991", 
      "type": "Book"
    }, 
    "name": "Nonlinear Potential Theory and PDEs", 
    "pagination": "107-118", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-1118-8_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6568437cda7cef7fcd5bf84a48004d1aafa52a31b075435b954c4244ac15b57f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021283794"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-1118-8_6", 
      "https://app.dimensions.ai/details/publication/pub.1021283794"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000256.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-94-011-1118-8_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1118-8_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1118-8_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1118-8_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-1118-8_6'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      22 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-1118-8_6 schema:author N835c87244cc142f190020e413a83baa1
2 schema:citation sg:pub.10.1007/bf00280825
3 sg:pub.10.1007/bf02386110
4 sg:pub.10.1007/bf02392541
5 https://doi.org/10.1016/0022-1236(89)90005-0
6 https://doi.org/10.1090/s0002-9947-1983-0690040-4
7 https://doi.org/10.1090/s0002-9947-1990-0998128-9
8 https://doi.org/10.1515/crll.1986.365.67
9 https://doi.org/10.5802/aif.1168
10 https://doi.org/10.5802/aif.944
11 schema:datePublished 1994
12 schema:datePublishedReg 1994-01-01
13 schema:description We consider equations like — div(∣∇u∣ p-2∇u) = µ, where µ is a nonnegative Radon measure and 1 < p < ∞. Results that relate the solution u and the measure µ are reviewed. A link between potential estimates and the boundary regularity of the Dirichlet problem is established.
14 schema:editor Nc2fb8420c6e744c294485fd5b5114610
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nf704ba7eeb914513a31a0ec0dd0893c9
19 schema:name Nonlinear Potential Theory and PDEs
20 schema:pagination 107-118
21 schema:productId N58046fa38799447495f724bf66af0f2a
22 Na5d21852e7624b44b9f274768d11abfb
23 Nfbdf83baacaa4baebe0345a92bae16d7
24 schema:publisher N17545eead439425c8b6b1ac4e315f933
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021283794
26 https://doi.org/10.1007/978-94-011-1118-8_6
27 schema:sdDatePublished 2019-04-15T11:34
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N0f10c3fb045b41d09e409f3f7c9541f4
30 schema:url http://link.springer.com/10.1007/978-94-011-1118-8_6
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N0f10c3fb045b41d09e409f3f7c9541f4 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N17545eead439425c8b6b1ac4e315f933 schema:location Dordrecht
37 schema:name Springer Netherlands
38 rdf:type schema:Organisation
39 N58046fa38799447495f724bf66af0f2a schema:name dimensions_id
40 schema:value pub.1021283794
41 rdf:type schema:PropertyValue
42 N835c87244cc142f190020e413a83baa1 rdf:first sg:person.011161247457.34
43 rdf:rest rdf:nil
44 Na5d21852e7624b44b9f274768d11abfb schema:name readcube_id
45 schema:value 6568437cda7cef7fcd5bf84a48004d1aafa52a31b075435b954c4244ac15b57f
46 rdf:type schema:PropertyValue
47 Naf68bf8fba954c6e8eca7a4b230dfbab schema:familyName Bertin
48 schema:givenName Emile
49 rdf:type schema:Person
50 Nc2fb8420c6e744c294485fd5b5114610 rdf:first Naf68bf8fba954c6e8eca7a4b230dfbab
51 rdf:rest rdf:nil
52 Nf704ba7eeb914513a31a0ec0dd0893c9 schema:isbn 978-94-010-4488-2
53 978-94-011-1118-8
54 schema:name ICPT ’91
55 rdf:type schema:Book
56 Nfbdf83baacaa4baebe0345a92bae16d7 schema:name doi
57 schema:value 10.1007/978-94-011-1118-8_6
58 rdf:type schema:PropertyValue
59 sg:person.011161247457.34 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
60 schema:familyName Kilpeläinen
61 schema:givenName Tero
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34
63 rdf:type schema:Person
64 sg:pub.10.1007/bf00280825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004221339
65 https://doi.org/10.1007/bf00280825
66 rdf:type schema:CreativeWork
67 sg:pub.10.1007/bf02386110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046491329
68 https://doi.org/10.1007/bf02386110
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf02392541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019757244
71 https://doi.org/10.1007/bf02392541
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/0022-1236(89)90005-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046529842
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1090/s0002-9947-1983-0690040-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050552716
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1090/s0002-9947-1990-0998128-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013726451
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1515/crll.1986.365.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037550402
80 rdf:type schema:CreativeWork
81 https://doi.org/10.5802/aif.1168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073136818
82 rdf:type schema:CreativeWork
83 https://doi.org/10.5802/aif.944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139632
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
86 schema:name Department of Mathematics, University of Jyväskylä, P.O. Box 35, 40351 Jyväskylä, Finland
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...