Bernstein Representations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

J. Bernad , A. Iltyakov , C. Martinez

ABSTRACT

In this paper is defined the notion of Bernstein representation and it is proved that every irreducible module over a nuclear Bernstein algebra is one-dimensional. The notion of universal representation of a Bernstein algebra is also introduced and some properties of this algebra are estudied by using properties of the given algebra. More... »

PAGES

39-45

References to SciGraph publications

  • 1989-06. Semi-prime Bernstein algebras in ARCHIV DER MATHEMATIK
  • Book

    TITLE

    Non-Associative Algebra and Its Applications

    ISBN

    978-94-010-4429-5
    978-94-011-0990-1

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_7

    DOI

    http://dx.doi.org/10.1007/978-94-011-0990-1_7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003697119


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bernad", 
            "givenName": "J.", 
            "id": "sg:person.011677301531.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677301531.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iltyakov", 
            "givenName": "A.", 
            "id": "sg:person.010463337232.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010463337232.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martinez", 
            "givenName": "C.", 
            "id": "sg:person.015261576461.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/00927878508823228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006866867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01237566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036479505", 
              "https://doi.org/10.1007/bf01237566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/coll/039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098702770"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994", 
        "datePublishedReg": "1994-01-01", 
        "description": "In this paper is defined the notion of Bernstein representation and it is proved that every irreducible module over a nuclear Bernstein algebra is one-dimensional. The notion of universal representation of a Bernstein algebra is also introduced and some properties of this algebra are estudied by using properties of the given algebra.", 
        "editor": [
          {
            "familyName": "Gonz\u00e1lez", 
            "givenName": "Santos", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-011-0990-1_7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-010-4429-5", 
            "978-94-011-0990-1"
          ], 
          "name": "Non-Associative Algebra and Its Applications", 
          "type": "Book"
        }, 
        "name": "Bernstein Representations", 
        "pagination": "39-45", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003697119"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-011-0990-1_7"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "119c9517e320684bbd7b9a5cca11d2baf1641ee8c0b09ea5045021cd64bf0cb8"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-011-0990-1_7", 
          "https://app.dimensions.ai/details/publication/pub.1003697119"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117097_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-94-011-0990-1_7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-011-0990-1_7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9791de5330c6439ebaa7926a995c7e35
    4 schema:citation sg:pub.10.1007/bf01237566
    5 https://doi.org/10.1080/00927878508823228
    6 https://doi.org/10.1090/coll/039
    7 schema:datePublished 1994
    8 schema:datePublishedReg 1994-01-01
    9 schema:description In this paper is defined the notion of Bernstein representation and it is proved that every irreducible module over a nuclear Bernstein algebra is one-dimensional. The notion of universal representation of a Bernstein algebra is also introduced and some properties of this algebra are estudied by using properties of the given algebra.
    10 schema:editor Nf91c02ebcee84256a80ea62bd6ab6781
    11 schema:genre chapter
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf Ne6a0c96e366d4b05b572dd10c9725b60
    15 schema:name Bernstein Representations
    16 schema:pagination 39-45
    17 schema:productId N92641641d4d846629e23c03fdb53a754
    18 N9729a907a30047c1bccd020cb21b651c
    19 Nb1ee800a8cbf4b1ebcba4b51a94f032a
    20 schema:publisher Nce96a59d9f2a44548fe9c8e189ededc6
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003697119
    22 https://doi.org/10.1007/978-94-011-0990-1_7
    23 schema:sdDatePublished 2019-04-16T09:27
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Ne83e77568f0b45ae935c26143dafd38a
    26 schema:url https://link.springer.com/10.1007%2F978-94-011-0990-1_7
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset chapters
    29 rdf:type schema:Chapter
    30 N0505ca2a42bf46668942c903e55f6782 rdf:first sg:person.015261576461.61
    31 rdf:rest rdf:nil
    32 N92641641d4d846629e23c03fdb53a754 schema:name doi
    33 schema:value 10.1007/978-94-011-0990-1_7
    34 rdf:type schema:PropertyValue
    35 N9729a907a30047c1bccd020cb21b651c schema:name dimensions_id
    36 schema:value pub.1003697119
    37 rdf:type schema:PropertyValue
    38 N9791de5330c6439ebaa7926a995c7e35 rdf:first sg:person.011677301531.62
    39 rdf:rest Ne97499907d2b4c1780724be0c3179478
    40 Nb1ee800a8cbf4b1ebcba4b51a94f032a schema:name readcube_id
    41 schema:value 119c9517e320684bbd7b9a5cca11d2baf1641ee8c0b09ea5045021cd64bf0cb8
    42 rdf:type schema:PropertyValue
    43 Nce96a59d9f2a44548fe9c8e189ededc6 schema:location Dordrecht
    44 schema:name Springer Netherlands
    45 rdf:type schema:Organisation
    46 Ne5136286023d49008cdd8e5ebd79bf37 schema:familyName González
    47 schema:givenName Santos
    48 rdf:type schema:Person
    49 Ne6a0c96e366d4b05b572dd10c9725b60 schema:isbn 978-94-010-4429-5
    50 978-94-011-0990-1
    51 schema:name Non-Associative Algebra and Its Applications
    52 rdf:type schema:Book
    53 Ne83e77568f0b45ae935c26143dafd38a schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 Ne97499907d2b4c1780724be0c3179478 rdf:first sg:person.010463337232.79
    56 rdf:rest N0505ca2a42bf46668942c903e55f6782
    57 Nf91c02ebcee84256a80ea62bd6ab6781 rdf:first Ne5136286023d49008cdd8e5ebd79bf37
    58 rdf:rest rdf:nil
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Pure Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:person.010463337232.79 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    66 schema:familyName Iltyakov
    67 schema:givenName A.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010463337232.79
    69 rdf:type schema:Person
    70 sg:person.011677301531.62 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    71 schema:familyName Bernad
    72 schema:givenName J.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677301531.62
    74 rdf:type schema:Person
    75 sg:person.015261576461.61 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    76 schema:familyName Martinez
    77 schema:givenName C.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf01237566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036479505
    81 https://doi.org/10.1007/bf01237566
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1080/00927878508823228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006866867
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1090/coll/039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098702770
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
    88 schema:name Departamento de Matemáticas, Universidad de Oviedo, 33007, Oviedo, Spain
    89 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...