Bernstein Algebras Whose Lattice Ideals is Linear View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

C. Martinez , J. Setó

ABSTRACT

In this paper Bernstein algebras and their ideal lattices will be considered. Some general facts about ideals of a Bernstein algebra will be given and we will exhibit some ideal lattices of a Bernstein algebra in case exclusive and normal. Finally, Bernstein algebra having a lineal ideal lattices will be characterized. More... »

PAGES

275-278

References to SciGraph publications

  • 1980. Algebras in Genetics in NONE
  • Book

    TITLE

    Non-Associative Algebra and Its Applications

    ISBN

    978-94-010-4429-5
    978-94-011-0990-1

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_45

    DOI

    http://dx.doi.org/10.1007/978-94-011-0990-1_45

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001412089


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33.007, Oviedo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martinez", 
            "givenName": "C.", 
            "id": "sg:person.015261576461.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33.007, Oviedo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Set\u00f3", 
            "givenName": "J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/00927879108824211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010833213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/jlms/s2-42.3.430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017958139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-51038-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048531426", 
              "https://doi.org/10.1007/978-3-642-51038-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-51038-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048531426", 
              "https://doi.org/10.1007/978-3-642-51038-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109710797", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109710797", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994", 
        "datePublishedReg": "1994-01-01", 
        "description": "In this paper Bernstein algebras and their ideal lattices will be considered. Some general facts about ideals of a Bernstein algebra will be given and we will exhibit some ideal lattices of a Bernstein algebra in case exclusive and normal. Finally, Bernstein algebra having a lineal ideal lattices will be characterized.", 
        "editor": [
          {
            "familyName": "Gonz\u00e1lez", 
            "givenName": "Santos", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-011-0990-1_45", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-010-4429-5", 
            "978-94-011-0990-1"
          ], 
          "name": "Non-Associative Algebra and Its Applications", 
          "type": "Book"
        }, 
        "name": "Bernstein Algebras Whose Lattice Ideals is Linear", 
        "pagination": "275-278", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001412089"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-011-0990-1_45"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "06ba0777f9978725a4cd3b06920dd2116259d85530a35ca89caa2c2feaed4210"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-011-0990-1_45", 
          "https://app.dimensions.ai/details/publication/pub.1001412089"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117100_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-94-011-0990-1_45"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_45'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_45'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_45'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_45'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-011-0990-1_45 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3862f3a1e5624c658bafd0eab2d1d6f9
    4 schema:citation sg:pub.10.1007/978-3-642-51038-0
    5 https://app.dimensions.ai/details/publication/pub.1109710797
    6 https://doi.org/10.1080/00927879108824211
    7 https://doi.org/10.1112/jlms/s2-42.3.430
    8 schema:datePublished 1994
    9 schema:datePublishedReg 1994-01-01
    10 schema:description In this paper Bernstein algebras and their ideal lattices will be considered. Some general facts about ideals of a Bernstein algebra will be given and we will exhibit some ideal lattices of a Bernstein algebra in case exclusive and normal. Finally, Bernstein algebra having a lineal ideal lattices will be characterized.
    11 schema:editor N70af402457b44d02b3ef97c0ca85c31a
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf Na4db1ea780c845988d788df07e6c7135
    16 schema:name Bernstein Algebras Whose Lattice Ideals is Linear
    17 schema:pagination 275-278
    18 schema:productId N69ea9c867d774c3a96e0ea0c4cac1b5c
    19 N80c52f2162dc4609bd18dba5d0e77ede
    20 Ne1f12f2b573844568d0df7b43bce3c4e
    21 schema:publisher N4b64026c8f49420f893cccf45a01bd9e
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001412089
    23 https://doi.org/10.1007/978-94-011-0990-1_45
    24 schema:sdDatePublished 2019-04-16T09:27
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N63ae5a973a084fbaa7f9842fb039fb50
    27 schema:url https://link.springer.com/10.1007%2F978-94-011-0990-1_45
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N3862f3a1e5624c658bafd0eab2d1d6f9 rdf:first sg:person.015261576461.61
    32 rdf:rest Nc7b387aa72db47a3a3860f9808c37635
    33 N4b64026c8f49420f893cccf45a01bd9e schema:location Dordrecht
    34 schema:name Springer Netherlands
    35 rdf:type schema:Organisation
    36 N63ae5a973a084fbaa7f9842fb039fb50 schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 N656e6d4d0fb04f46a46a50e5f9a99a92 schema:familyName González
    39 schema:givenName Santos
    40 rdf:type schema:Person
    41 N69ea9c867d774c3a96e0ea0c4cac1b5c schema:name dimensions_id
    42 schema:value pub.1001412089
    43 rdf:type schema:PropertyValue
    44 N70af402457b44d02b3ef97c0ca85c31a rdf:first N656e6d4d0fb04f46a46a50e5f9a99a92
    45 rdf:rest rdf:nil
    46 N80c52f2162dc4609bd18dba5d0e77ede schema:name doi
    47 schema:value 10.1007/978-94-011-0990-1_45
    48 rdf:type schema:PropertyValue
    49 Na266f2ffcc3949318976fe6c078e7464 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    50 schema:familyName Setó
    51 schema:givenName J.
    52 rdf:type schema:Person
    53 Na4db1ea780c845988d788df07e6c7135 schema:isbn 978-94-010-4429-5
    54 978-94-011-0990-1
    55 schema:name Non-Associative Algebra and Its Applications
    56 rdf:type schema:Book
    57 Nc7b387aa72db47a3a3860f9808c37635 rdf:first Na266f2ffcc3949318976fe6c078e7464
    58 rdf:rest rdf:nil
    59 Ne1f12f2b573844568d0df7b43bce3c4e schema:name readcube_id
    60 schema:value 06ba0777f9978725a4cd3b06920dd2116259d85530a35ca89caa2c2feaed4210
    61 rdf:type schema:PropertyValue
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:person.015261576461.61 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    69 schema:familyName Martinez
    70 schema:givenName C.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61
    72 rdf:type schema:Person
    73 sg:pub.10.1007/978-3-642-51038-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048531426
    74 https://doi.org/10.1007/978-3-642-51038-0
    75 rdf:type schema:CreativeWork
    76 https://app.dimensions.ai/details/publication/pub.1109710797 schema:CreativeWork
    77 https://doi.org/10.1080/00927879108824211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010833213
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1112/jlms/s2-42.3.430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017958139
    80 rdf:type schema:CreativeWork
    81 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
    82 schema:name Departamento de Matemáticas, Universidad de Oviedo, 33.007, Oviedo, Spain
    83 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...