1994
AUTHORSS. Gonzalez , J. C. Gutierrez , C. Martinez
ABSTRACTLet (A,w) be a finite dimensional n-th order Bernstein algebra over an infinite field K (charK ≠ 2). If e ∈ A is a nontrivial idempotent then A = Ke ⊕ Ue ⊕ Ve where and Ve = {x ∈ Kerw/Renx = 0}. In this paper we show the following results:(1) The dimension of Ue does not depend on idempotent e,(2) if K = ℝ and dimUe = r then there is an r-parametric family of idempotents of the A, (3) if K = ℝ then dimRVe ≥ n. More... »
PAGES158-163
Non-Associative Algebra and Its Applications
ISBN
978-94-010-4429-5
978-94-011-0990-1
http://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_25
DOIhttp://dx.doi.org/10.1007/978-94-011-0990-1_25
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1028285929
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Gonzalez",
"givenName": "S.",
"id": "sg:person.016661036521.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661036521.95"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Gutierrez",
"givenName": "J. C.",
"id": "sg:person.07555436243.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07555436243.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Departamento de Matem\u00e1ticas, Universidad de Oviedo, 33007, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Martinez",
"givenName": "C.",
"id": "sg:person.015261576461.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1112/plms/s3-40.2.346",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002335212"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1112/jlms/s2-9.4.613",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044990209"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/imammb/7.1.33",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059688141"
],
"type": "CreativeWork"
}
],
"datePublished": "1994",
"datePublishedReg": "1994-01-01",
"description": "Let (A,w) be a finite dimensional n-th order Bernstein algebra over an infinite field K (charK \u2260 2). If e \u2208 A is a nontrivial idempotent then A = Ke \u2295 Ue \u2295 Ve where and Ve = {x \u2208 Kerw/Renx = 0}. In this paper we show the following results:(1) The dimension of Ue does not depend on idempotent e,(2) if K = \u211d and dimUe = r then there is an r-parametric family of idempotents of the A, (3) if K = \u211d then dimRVe \u2265 n.",
"editor": [
{
"familyName": "Gonz\u00e1lez",
"givenName": "Santos",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-011-0990-1_25",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-94-010-4429-5",
"978-94-011-0990-1"
],
"name": "Non-Associative Algebra and Its Applications",
"type": "Book"
},
"name": "On Bernstein Algebras of n-th Order",
"pagination": "158-163",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028285929"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-011-0990-1_25"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"86bf8f9fa8f99c2ebef65837359cab68dd2d502ddaab15c052860f95d9649638"
]
}
],
"publisher": {
"location": "Dordrecht",
"name": "Springer Netherlands",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-011-0990-1_25",
"https://app.dimensions.ai/details/publication/pub.1028285929"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T09:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117109_00000001.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-94-011-0990-1_25"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_25'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_25'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_25'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0990-1_25'
This table displays all metadata directly associated to this object as RDF triples.
88 TRIPLES
23 PREDICATES
30 URIs
20 LITERALS
8 BLANK NODES