Large-Scale Dynamics of the Kolmogorov Flow on the Beta-Plane View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

U. Frisch , B. Legras , B. Villone

ABSTRACT

The Kolmogorov flow is a solution of the incompressible 2-D Navier-Stokes equations with a force which depends sinusoidally on a single space-coordinate (Meshalkin & Sinai 1961, Nepomnyashchy 1976, Dubrulle & Frisch 1991). The basic solution has the same structure as the force, e.g., u = (-sin y, 0). Above a critical Reynolds number (defined here as the inverse kinematic viscosity) , there is a large-scale instability of the “negative viscosity” type, transverse to the basic flow. Once it is sufficiently mature, it reacts back on the basic flow by modifiying its eddy-viscosity. The nonlinear dynamics is then governed by a Cahn-Hilliard equation (Nepomnyashchyi 1976, Kawasaki and Ohta 1982, Sivashinsky 1985, She 1987). More... »

PAGES

138-140

Book

TITLE

Advances in Turbulence V

ISBN

978-94-010-4205-5
978-94-011-0457-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-0457-9_27

DOI

http://dx.doi.org/10.1007/978-94-011-0457-9_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014783326


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "CNRS, Observatoire de Nice, BP 229, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "U.", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "CNRS, Laboratoire de Meteorologie Dynamique, 24 rue Lhomond, 75231, Paris Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legras", 
        "givenName": "B.", 
        "id": "sg:person.014763102045.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763102045.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "CNR, Istituto Cosmogeofisica, Corso Fiume 4, 10133, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villone", 
        "givenName": "B.", 
        "id": "sg:person.015640522045.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640522045.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-2789(85)90009-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014438076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(85)90009-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014438076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(82)90178-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025505969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(82)90178-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025505969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(62)90149-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035557773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(62)90149-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035557773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90244-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038950013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90244-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038950013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sapm196948129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046065435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.5355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.5355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483329"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "The Kolmogorov flow is a solution of the incompressible 2-D Navier-Stokes equations with a force which depends sinusoidally on a single space-coordinate (Meshalkin & Sinai 1961, Nepomnyashchy 1976, Dubrulle & Frisch 1991). The basic solution has the same structure as the force, e.g., u = (-sin y, 0). Above a critical Reynolds number (defined here as the inverse kinematic viscosity) , there is a large-scale instability of the \u201cnegative viscosity\u201d type, transverse to the basic flow. Once it is sufficiently mature, it reacts back on the basic flow by modifiying its eddy-viscosity. The nonlinear dynamics is then governed by a Cahn-Hilliard equation (Nepomnyashchyi 1976, Kawasaki and Ohta 1982, Sivashinsky 1985, She 1987).", 
    "editor": [
      {
        "familyName": "Benzi", 
        "givenName": "Roberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-0457-9_27", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-4205-5", 
        "978-94-011-0457-9"
      ], 
      "name": "Advances in Turbulence V", 
      "type": "Book"
    }, 
    "name": "Large-Scale Dynamics of the Kolmogorov Flow on the Beta-Plane", 
    "pagination": "138-140", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014783326"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-0457-9_27"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "466e75846286150e007c084838a2d4d4dbf9e6d8cde4089d78b914490882a0eb"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-0457-9_27", 
      "https://app.dimensions.ai/details/publication/pub.1014783326"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-011-0457-9_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0457-9_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0457-9_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0457-9_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0457-9_27'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-0457-9_27 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nb355d3875fe541d99c01e0bf2c947c20
4 schema:citation https://doi.org/10.1002/sapm196948129
5 https://doi.org/10.1016/0021-8928(62)90149-1
6 https://doi.org/10.1016/0167-2789(85)90009-0
7 https://doi.org/10.1016/0375-9601(87)90244-1
8 https://doi.org/10.1016/0378-4371(82)90178-9
9 https://doi.org/10.1103/physreva.43.5355
10 schema:datePublished 1995
11 schema:datePublishedReg 1995-01-01
12 schema:description The Kolmogorov flow is a solution of the incompressible 2-D Navier-Stokes equations with a force which depends sinusoidally on a single space-coordinate (Meshalkin & Sinai 1961, Nepomnyashchy 1976, Dubrulle & Frisch 1991). The basic solution has the same structure as the force, e.g., u = (-sin y, 0). Above a critical Reynolds number (defined here as the inverse kinematic viscosity) , there is a large-scale instability of the “negative viscosity” type, transverse to the basic flow. Once it is sufficiently mature, it reacts back on the basic flow by modifiying its eddy-viscosity. The nonlinear dynamics is then governed by a Cahn-Hilliard equation (Nepomnyashchyi 1976, Kawasaki and Ohta 1982, Sivashinsky 1985, She 1987).
13 schema:editor N121b36bbc21748438c34a39c45c59736
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N48e6f59a42e547ffb6da4405edc3b97c
18 schema:name Large-Scale Dynamics of the Kolmogorov Flow on the Beta-Plane
19 schema:pagination 138-140
20 schema:productId N3803d41b90864224826d5eb48d6e7164
21 Nab9a83e7c4ab4b75aae620ff0c2a1b2c
22 Nc232cce0065244d4b6c3f0d6aa1ca218
23 schema:publisher N635c37412c714de8a228a5ed8cc342c8
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014783326
25 https://doi.org/10.1007/978-94-011-0457-9_27
26 schema:sdDatePublished 2019-04-16T09:09
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Ncea99967f9a349f980bd17f7e9b4931b
29 schema:url https://link.springer.com/10.1007%2F978-94-011-0457-9_27
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N121b36bbc21748438c34a39c45c59736 rdf:first N3e31939d8e9348dd802a325be8721809
34 rdf:rest rdf:nil
35 N3803d41b90864224826d5eb48d6e7164 schema:name dimensions_id
36 schema:value pub.1014783326
37 rdf:type schema:PropertyValue
38 N3e31939d8e9348dd802a325be8721809 schema:familyName Benzi
39 schema:givenName Roberto
40 rdf:type schema:Person
41 N47addc8e54c84d578ca787e7579ea217 rdf:first sg:person.014763102045.87
42 rdf:rest N9de850196aa14b02ba0d70cd372b91a7
43 N48e6f59a42e547ffb6da4405edc3b97c schema:isbn 978-94-010-4205-5
44 978-94-011-0457-9
45 schema:name Advances in Turbulence V
46 rdf:type schema:Book
47 N635c37412c714de8a228a5ed8cc342c8 schema:location Dordrecht
48 schema:name Springer Netherlands
49 rdf:type schema:Organisation
50 N9de850196aa14b02ba0d70cd372b91a7 rdf:first sg:person.015640522045.38
51 rdf:rest rdf:nil
52 Nab9a83e7c4ab4b75aae620ff0c2a1b2c schema:name readcube_id
53 schema:value 466e75846286150e007c084838a2d4d4dbf9e6d8cde4089d78b914490882a0eb
54 rdf:type schema:PropertyValue
55 Nb355d3875fe541d99c01e0bf2c947c20 rdf:first sg:person.011615073661.47
56 rdf:rest N47addc8e54c84d578ca787e7579ea217
57 Nc232cce0065244d4b6c3f0d6aa1ca218 schema:name doi
58 schema:value 10.1007/978-94-011-0457-9_27
59 rdf:type schema:PropertyValue
60 Ncea99967f9a349f980bd17f7e9b4931b schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
66 schema:name Applied Mathematics
67 rdf:type schema:DefinedTerm
68 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
69 schema:familyName Frisch
70 schema:givenName U.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
72 rdf:type schema:Person
73 sg:person.014763102045.87 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
74 schema:familyName Legras
75 schema:givenName B.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763102045.87
77 rdf:type schema:Person
78 sg:person.015640522045.38 schema:affiliation https://www.grid.ac/institutes/grid.5326.2
79 schema:familyName Villone
80 schema:givenName B.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640522045.38
82 rdf:type schema:Person
83 https://doi.org/10.1002/sapm196948129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046065435
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0021-8928(62)90149-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035557773
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0167-2789(85)90009-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014438076
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0375-9601(87)90244-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038950013
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0378-4371(82)90178-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025505969
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physreva.43.5355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060483329
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
96 schema:name CNRS, Laboratoire de Meteorologie Dynamique, 24 rue Lhomond, 75231, Paris Cedex 5, France
97 CNRS, Observatoire de Nice, BP 229, 06304, Nice Cedex 4, France
98 rdf:type schema:Organization
99 https://www.grid.ac/institutes/grid.5326.2 schema:alternateName National Research Council
100 schema:name CNR, Istituto Cosmogeofisica, Corso Fiume 4, 10133, Torino, Italy
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...