A New Mechanism for Laser-Frequency Mixing in a Scanning Tunneling Microscope View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

C. Sammet , W. Krieger , M. Völcker , H. Walther

ABSTRACT

Two infrared laser frequencies coupled into the tunneling junction of a scanning tunneling microscope (STM) lead to the generation of a difference-frequency signal. In this article two different mechanisms of difference-frequency generation (DFG) in the tunneling junction are presented. Besides DFG due to the nonlinearity of the current-voltage characteristic known from previous experiments, nonlinear optical DFG arising from the breakdown of the inversion symmetry at the metal-vacuum interface is demonstrated. This nonlinear optical DFG may be a step further towards laser spectroscopy with an STM. More... »

PAGES

257-268

References to SciGraph publications

  • 1977. Optical mixing of CO2 lasers in the far-infrared in NONLINEAR INFRARED GENERATION
  • Book

    TITLE

    Photons and Local Probes

    ISBN

    978-94-010-4189-8
    978-94-011-0423-4

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-011-0423-4_22

    DOI

    http://dx.doi.org/10.1007/978-94-011-0423-4_22

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053079484


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute of Quantum Optics", 
              "id": "https://www.grid.ac/institutes/grid.450272.6", 
              "name": [
                "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sammet", 
            "givenName": "C.", 
            "id": "sg:person.0613126160.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613126160.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute of Quantum Optics", 
              "id": "https://www.grid.ac/institutes/grid.450272.6", 
              "name": [
                "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krieger", 
            "givenName": "W.", 
            "id": "sg:person.014530554467.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014530554467.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute of Quantum Optics", 
              "id": "https://www.grid.ac/institutes/grid.450272.6", 
              "name": [
                "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "V\u00f6lcker", 
            "givenName": "M.", 
            "id": "sg:person.0661241360.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661241360.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute of Quantum Optics", 
              "id": "https://www.grid.ac/institutes/grid.450272.6", 
              "name": [
                "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walther", 
            "givenName": "H.", 
            "id": "sg:person.016355234775.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3540079459_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012009337", 
              "https://doi.org/10.1007/3540079459_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(76)90205-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032494898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(76)90205-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032494898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1702682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057772907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.98866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058138965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.35.3047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060542175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.35.3047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060542175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.41.10229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060552927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.41.10229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060552927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.66.1717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060802245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.66.1717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060802245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.585564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062195611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.587723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062197770"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995", 
        "datePublishedReg": "1995-01-01", 
        "description": "Two infrared laser frequencies coupled into the tunneling junction of a scanning tunneling microscope (STM) lead to the generation of a difference-frequency signal. In this article two different mechanisms of difference-frequency generation (DFG) in the tunneling junction are presented. Besides DFG due to the nonlinearity of the current-voltage characteristic known from previous experiments, nonlinear optical DFG arising from the breakdown of the inversion symmetry at the metal-vacuum interface is demonstrated. This nonlinear optical DFG may be a step further towards laser spectroscopy with an STM.", 
        "editor": [
          {
            "familyName": "Marti", 
            "givenName": "Othmar", 
            "type": "Person"
          }, 
          {
            "familyName": "M\u00f6ller", 
            "givenName": "Rolf", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-011-0423-4_22", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-010-4189-8", 
            "978-94-011-0423-4"
          ], 
          "name": "Photons and Local Probes", 
          "type": "Book"
        }, 
        "name": "A New Mechanism for Laser-Frequency Mixing in a Scanning Tunneling Microscope", 
        "pagination": "257-268", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053079484"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-011-0423-4_22"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fcd47aec4d663349ff23e52db16cd28a4da738f8c3f2e2b8b2237101fa03d1c3"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-011-0423-4_22", 
          "https://app.dimensions.ai/details/publication/pub.1053079484"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88253_00000001.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-94-011-0423-4_22"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0423-4_22'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0423-4_22'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0423-4_22'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0423-4_22'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-011-0423-4_22 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 schema:author Nefbb4fa56b534911bc1e74b431a4a6f3
    4 schema:citation sg:pub.10.1007/3540079459_8
    5 https://doi.org/10.1016/0039-6028(76)90205-3
    6 https://doi.org/10.1063/1.1702682
    7 https://doi.org/10.1063/1.98866
    8 https://doi.org/10.1103/physrevb.35.3047
    9 https://doi.org/10.1103/physrevb.41.10229
    10 https://doi.org/10.1103/physrevlett.66.1717
    11 https://doi.org/10.1116/1.585564
    12 https://doi.org/10.1116/1.587723
    13 schema:datePublished 1995
    14 schema:datePublishedReg 1995-01-01
    15 schema:description Two infrared laser frequencies coupled into the tunneling junction of a scanning tunneling microscope (STM) lead to the generation of a difference-frequency signal. In this article two different mechanisms of difference-frequency generation (DFG) in the tunneling junction are presented. Besides DFG due to the nonlinearity of the current-voltage characteristic known from previous experiments, nonlinear optical DFG arising from the breakdown of the inversion symmetry at the metal-vacuum interface is demonstrated. This nonlinear optical DFG may be a step further towards laser spectroscopy with an STM.
    16 schema:editor N2fda9a45c37243e982096af5932fd66b
    17 schema:genre chapter
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf Nb345957897e24d458bdbe31432c43be9
    21 schema:name A New Mechanism for Laser-Frequency Mixing in a Scanning Tunneling Microscope
    22 schema:pagination 257-268
    23 schema:productId N019af39e03014ae88bc8a245da567b6a
    24 Nb7e71cae04b14e7ba4a764e55d5d6815
    25 Nd8907554059d43f19c93b7dd5a4050fc
    26 schema:publisher Nb8b0643f52754b5e91b84e2d81cb0926
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053079484
    28 https://doi.org/10.1007/978-94-011-0423-4_22
    29 schema:sdDatePublished 2019-04-16T08:48
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N463b3a4e3f5f428e95e46c4c6a6686f1
    32 schema:url https://link.springer.com/10.1007%2F978-94-011-0423-4_22
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset chapters
    35 rdf:type schema:Chapter
    36 N019af39e03014ae88bc8a245da567b6a schema:name dimensions_id
    37 schema:value pub.1053079484
    38 rdf:type schema:PropertyValue
    39 N01be60b36f9744a7bf5835bf97ccc4ec rdf:first sg:person.016355234775.61
    40 rdf:rest rdf:nil
    41 N2fda9a45c37243e982096af5932fd66b rdf:first Neabbb43029cf4b88802de0c7eb04e304
    42 rdf:rest N317197f73efa4dd599f2a85344edb6ec
    43 N317197f73efa4dd599f2a85344edb6ec rdf:first N3659d598afad452b825ecf8a76b08760
    44 rdf:rest rdf:nil
    45 N3659d598afad452b825ecf8a76b08760 schema:familyName Möller
    46 schema:givenName Rolf
    47 rdf:type schema:Person
    48 N3cbab35e3ffa4dc2b4bbc7d59a76755c rdf:first sg:person.014530554467.84
    49 rdf:rest Nf2d1b65236a3475cb0e321a22c262bab
    50 N463b3a4e3f5f428e95e46c4c6a6686f1 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Nb345957897e24d458bdbe31432c43be9 schema:isbn 978-94-010-4189-8
    53 978-94-011-0423-4
    54 schema:name Photons and Local Probes
    55 rdf:type schema:Book
    56 Nb7e71cae04b14e7ba4a764e55d5d6815 schema:name readcube_id
    57 schema:value fcd47aec4d663349ff23e52db16cd28a4da738f8c3f2e2b8b2237101fa03d1c3
    58 rdf:type schema:PropertyValue
    59 Nb8b0643f52754b5e91b84e2d81cb0926 schema:location Dordrecht
    60 schema:name Springer Netherlands
    61 rdf:type schema:Organisation
    62 Nd8907554059d43f19c93b7dd5a4050fc schema:name doi
    63 schema:value 10.1007/978-94-011-0423-4_22
    64 rdf:type schema:PropertyValue
    65 Neabbb43029cf4b88802de0c7eb04e304 schema:familyName Marti
    66 schema:givenName Othmar
    67 rdf:type schema:Person
    68 Nefbb4fa56b534911bc1e74b431a4a6f3 rdf:first sg:person.0613126160.21
    69 rdf:rest N3cbab35e3ffa4dc2b4bbc7d59a76755c
    70 Nf2d1b65236a3475cb0e321a22c262bab rdf:first sg:person.0661241360.38
    71 rdf:rest N01be60b36f9744a7bf5835bf97ccc4ec
    72 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Physical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Optical Physics
    77 rdf:type schema:DefinedTerm
    78 sg:person.014530554467.84 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
    79 schema:familyName Krieger
    80 schema:givenName W.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014530554467.84
    82 rdf:type schema:Person
    83 sg:person.016355234775.61 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
    84 schema:familyName Walther
    85 schema:givenName H.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61
    87 rdf:type schema:Person
    88 sg:person.0613126160.21 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
    89 schema:familyName Sammet
    90 schema:givenName C.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613126160.21
    92 rdf:type schema:Person
    93 sg:person.0661241360.38 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
    94 schema:familyName Völcker
    95 schema:givenName M.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661241360.38
    97 rdf:type schema:Person
    98 sg:pub.10.1007/3540079459_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012009337
    99 https://doi.org/10.1007/3540079459_8
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/0039-6028(76)90205-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032494898
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1063/1.1702682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057772907
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1063/1.98866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058138965
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1103/physrevb.35.3047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060542175
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1103/physrevb.41.10229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060552927
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1103/physrevlett.66.1717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802245
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1116/1.585564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062195611
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1116/1.587723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062197770
    116 rdf:type schema:CreativeWork
    117 https://www.grid.ac/institutes/grid.450272.6 schema:alternateName Max Planck Institute of Quantum Optics
    118 schema:name Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748, Garching, Germany
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...