Aluminum-Rich Metallic Glasses View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

G. J. Shiflet , Y. He , S. J. Poon , G. M. Dougherty , H. Chen

ABSTRACT

This paper will review work done in our laboratory on the formation, thermodynamics and crystallization of aluminum based metallic glasses. The results demonstrate that the metallic glasses are truly amorphous and not microcrystalline and that they are unusual in their formation because the alloys contain up to 90 at.% aluminum, there is no deep eutectic present in the phase diagram and the reduced glass temperatures are low (0.44) relative to the ease of glass form ability in this system. Tensile strengths that exceed 1200 MPa are obtained for several of the compositions and reveal increased strength values after partial crystallization. Various methods to form nanocrystals of aluminum in an amorphous matrix are discussed and include mechanical and thermal processing. More... »

PAGES

53-71

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-011-0223-0_5

DOI

http://dx.doi.org/10.1007/978-94-011-0223-0_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022727092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Virginia, 22903, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Materials Science and Engineering, University of Virginia, 22903, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiflet", 
        "givenName": "G. J.", 
        "id": "sg:person.015100642757.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100642757.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22903, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22903, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Y.", 
        "id": "sg:person.016343506523.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016343506523.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22903, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22903, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poon", 
        "givenName": "S. J.", 
        "id": "sg:person.010252015157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Virginia, 22903, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Materials Science and Engineering, University of Virginia, 22903, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dougherty", 
        "givenName": "G. M.", 
        "id": "sg:person.012470552441.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470552441.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Materials, Department of Chemistry, University of Massachusetts, 01854, Lowell, Massachusettes, USA", 
          "id": "http://www.grid.ac/institutes/grid.225262.3", 
          "name": [
            "Center for Advanced Materials, Department of Chemistry, University of Massachusetts, 01854, Lowell, Massachusettes, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "H.", 
        "id": "sg:person.07640435323.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07640435323.85"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "This paper will review work done in our laboratory on the formation, thermodynamics and crystallization of aluminum based metallic glasses. The results demonstrate that the metallic glasses are truly amorphous and not microcrystalline and that they are unusual in their formation because the alloys contain up to 90 at.% aluminum, there is no deep eutectic present in the phase diagram and the reduced glass temperatures are low (0.44) relative to the ease of glass form ability in this system. Tensile strengths that exceed 1200 MPa are obtained for several of the compositions and reveal increased strength values after partial crystallization. Various methods to form nanocrystals of aluminum in an amorphous matrix are discussed and include mechanical and thermal processing.", 
    "editor": [
      {
        "familyName": "Otooni", 
        "givenName": "Monde A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-011-0223-0_5", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-4100-3", 
        "978-94-011-0223-0"
      ], 
      "name": "Science and Technology of Rapid Solidification and Processing", 
      "type": "Book"
    }, 
    "keywords": [
      "metallic glasses", 
      "glass-forming ability", 
      "crystallization of aluminum", 
      "tensile strength", 
      "thermal processing", 
      "eutectic present", 
      "amorphous matrix", 
      "strength values", 
      "partial crystallization", 
      "glass temperature", 
      "aluminum", 
      "glass", 
      "phase diagram", 
      "alloy", 
      "MPa", 
      "form ability", 
      "crystallization", 
      "nanocrystals", 
      "temperature", 
      "strength", 
      "matrix", 
      "processing", 
      "formation", 
      "thermodynamics", 
      "diagram", 
      "system", 
      "work", 
      "method", 
      "composition", 
      "ease", 
      "results", 
      "values", 
      "laboratory", 
      "present", 
      "ability", 
      "paper"
    ], 
    "name": "Aluminum-Rich Metallic Glasses", 
    "pagination": "53-71", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022727092"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-011-0223-0_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-011-0223-0_5", 
      "https://app.dimensions.ai/details/publication/pub.1022727092"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_133.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-011-0223-0_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0223-0_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0223-0_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0223-0_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0223-0_5'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-011-0223-0_5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0322bc004c91454f8bf6fca0f1f0d608
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description This paper will review work done in our laboratory on the formation, thermodynamics and crystallization of aluminum based metallic glasses. The results demonstrate that the metallic glasses are truly amorphous and not microcrystalline and that they are unusual in their formation because the alloys contain up to 90 at.% aluminum, there is no deep eutectic present in the phase diagram and the reduced glass temperatures are low (0.44) relative to the ease of glass form ability in this system. Tensile strengths that exceed 1200 MPa are obtained for several of the compositions and reveal increased strength values after partial crystallization. Various methods to form nanocrystals of aluminum in an amorphous matrix are discussed and include mechanical and thermal processing.
7 schema:editor Nab97673c1e044b49bef5d7840e7b79d8
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N6a8c6d38a4c542e3ae14a5029e212fe2
11 schema:keywords MPa
12 ability
13 alloy
14 aluminum
15 amorphous matrix
16 composition
17 crystallization
18 crystallization of aluminum
19 diagram
20 ease
21 eutectic present
22 form ability
23 formation
24 glass
25 glass temperature
26 glass-forming ability
27 laboratory
28 matrix
29 metallic glasses
30 method
31 nanocrystals
32 paper
33 partial crystallization
34 phase diagram
35 present
36 processing
37 results
38 strength
39 strength values
40 system
41 temperature
42 tensile strength
43 thermal processing
44 thermodynamics
45 values
46 work
47 schema:name Aluminum-Rich Metallic Glasses
48 schema:pagination 53-71
49 schema:productId Nb67d4aa274bc4c01a5d84890135ec476
50 Ne6547bed2a8e4798b8f5824d946ab873
51 schema:publisher N60d0224489044867803150beff177b55
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022727092
53 https://doi.org/10.1007/978-94-011-0223-0_5
54 schema:sdDatePublished 2022-12-01T06:46
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N6d8b2686780a4cdca17fd7371a33d113
57 schema:url https://doi.org/10.1007/978-94-011-0223-0_5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N0322bc004c91454f8bf6fca0f1f0d608 rdf:first sg:person.015100642757.27
62 rdf:rest Ned65f72dfdc74cbbb8198a7037e0936f
63 N216aef22c59041e285f5db7dad5b7e09 rdf:first sg:person.07640435323.85
64 rdf:rest rdf:nil
65 N23c6edf6123f4350a68cea61aa37e979 rdf:first sg:person.012470552441.51
66 rdf:rest N216aef22c59041e285f5db7dad5b7e09
67 N60d0224489044867803150beff177b55 schema:name Springer Nature
68 rdf:type schema:Organisation
69 N6a8c6d38a4c542e3ae14a5029e212fe2 schema:isbn 978-94-010-4100-3
70 978-94-011-0223-0
71 schema:name Science and Technology of Rapid Solidification and Processing
72 rdf:type schema:Book
73 N6d8b2686780a4cdca17fd7371a33d113 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Na6f58f15afb64fcca72025353e1d51cf rdf:first sg:person.010252015157.28
76 rdf:rest N23c6edf6123f4350a68cea61aa37e979
77 Nab97673c1e044b49bef5d7840e7b79d8 rdf:first Nee7e7f8130ee48f59c41506740336976
78 rdf:rest rdf:nil
79 Nb67d4aa274bc4c01a5d84890135ec476 schema:name doi
80 schema:value 10.1007/978-94-011-0223-0_5
81 rdf:type schema:PropertyValue
82 Ne6547bed2a8e4798b8f5824d946ab873 schema:name dimensions_id
83 schema:value pub.1022727092
84 rdf:type schema:PropertyValue
85 Ned65f72dfdc74cbbb8198a7037e0936f rdf:first sg:person.016343506523.40
86 rdf:rest Na6f58f15afb64fcca72025353e1d51cf
87 Nee7e7f8130ee48f59c41506740336976 schema:familyName Otooni
88 schema:givenName Monde A.
89 rdf:type schema:Person
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
94 schema:name Materials Engineering
95 rdf:type schema:DefinedTerm
96 sg:person.010252015157.28 schema:affiliation grid-institutes:grid.27755.32
97 schema:familyName Poon
98 schema:givenName S. J.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28
100 rdf:type schema:Person
101 sg:person.012470552441.51 schema:affiliation grid-institutes:grid.27755.32
102 schema:familyName Dougherty
103 schema:givenName G. M.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470552441.51
105 rdf:type schema:Person
106 sg:person.015100642757.27 schema:affiliation grid-institutes:grid.27755.32
107 schema:familyName Shiflet
108 schema:givenName G. J.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100642757.27
110 rdf:type schema:Person
111 sg:person.016343506523.40 schema:affiliation grid-institutes:grid.27755.32
112 schema:familyName He
113 schema:givenName Y.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016343506523.40
115 rdf:type schema:Person
116 sg:person.07640435323.85 schema:affiliation grid-institutes:grid.225262.3
117 schema:familyName Chen
118 schema:givenName H.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07640435323.85
120 rdf:type schema:Person
121 grid-institutes:grid.225262.3 schema:alternateName Center for Advanced Materials, Department of Chemistry, University of Massachusetts, 01854, Lowell, Massachusettes, USA
122 schema:name Center for Advanced Materials, Department of Chemistry, University of Massachusetts, 01854, Lowell, Massachusettes, USA
123 rdf:type schema:Organization
124 grid-institutes:grid.27755.32 schema:alternateName Department of Materials Science and Engineering, University of Virginia, 22903, Charlottesville, VA, USA
125 Department of Physics, University of Virginia, 22903, Charlottesville, VA, USA
126 schema:name Department of Materials Science and Engineering, University of Virginia, 22903, Charlottesville, VA, USA
127 Department of Physics, University of Virginia, 22903, Charlottesville, VA, USA
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...