Ontology type: schema:Chapter
1995
AUTHORSI. Paulicka , V. Sochor , J. Stulpa
ABSTRACTIn this paper we demonstrate the operation of a feedback stabilised quadrature phase-shifted extrinsic Fabry-Perot (FP) fibre-optic sensor for the remote detection of the amplitude and the relative phase of subnanometer vibrations and displacements. The surface of a measured object facing at a short distance the end of single-mode fibre, acts as a reflector, thereby creating an air gap of Fabry-Perot cavity. To provide the surface profile measurements the fibre end is vibrating laterally at a constant distance from the plane of object surface. A brief description of the device is given, and its operation is described. A resolution in the order of 10–11m for the vibration amplitude measurement was obtained. In the surface scanning regime a vertical deviations around 1 nm can be distinguished. More... »
PAGES838-838
Trends in Optical Fibre Metrology and Standards
ISBN
978-94-010-4020-4
978-94-011-0035-9
http://scigraph.springernature.com/pub.10.1007/978-94-011-0035-9_58
DOIhttp://dx.doi.org/10.1007/978-94-011-0035-9_58
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015204092
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics, Czech Technical University, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic",
"id": "http://www.grid.ac/institutes/grid.6652.7",
"name": [
"Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics, Czech Technical University, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic"
],
"type": "Organization"
},
"familyName": "Paulicka",
"givenName": "I.",
"id": "sg:person.0677537705.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677537705.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics, Czech Technical University, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic",
"id": "http://www.grid.ac/institutes/grid.6652.7",
"name": [
"Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics, Czech Technical University, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic"
],
"type": "Organization"
},
"familyName": "Sochor",
"givenName": "V.",
"id": "sg:person.010370605545.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010370605545.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics, Czech Technical University, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic",
"id": "http://www.grid.ac/institutes/grid.6652.7",
"name": [
"Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics, Czech Technical University, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic"
],
"type": "Organization"
},
"familyName": "Stulpa",
"givenName": "J.",
"type": "Person"
}
],
"datePublished": "1995",
"datePublishedReg": "1995-01-01",
"description": "In this paper we demonstrate the operation of a feedback stabilised quadrature phase-shifted extrinsic Fabry-Perot (FP) fibre-optic sensor for the remote detection of the amplitude and the relative phase of subnanometer vibrations and displacements. The surface of a measured object facing at a short distance the end of single-mode fibre, acts as a reflector, thereby creating an air gap of Fabry-Perot cavity. To provide the surface profile measurements the fibre end is vibrating laterally at a constant distance from the plane of object surface. A brief description of the device is given, and its operation is described. A resolution in the order of 10\u201311m for the vibration amplitude measurement was obtained. In the surface scanning regime a vertical deviations around 1 nm can be distinguished.",
"editor": [
{
"familyName": "Soares",
"givenName": "Oliv\u00e9rio D. D.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-011-0035-9_58",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-94-010-4020-4",
"978-94-011-0035-9"
],
"name": "Trends in Optical Fibre Metrology and Standards",
"type": "Book"
},
"keywords": [
"profile measurements",
"single-mode fiber",
"Fabry-Perot cavity",
"surface profile measurement",
"Fiber-Optic Fabry",
"Fabry-Perot fiber-optic sensors",
"relative phase",
"scanning regime",
"fiber optic sensors",
"vibration amplitude measurements",
"fiber end",
"remote detection",
"Perot Sensor",
"air gap",
"amplitude measurements",
"object surface",
"measurements",
"short distances",
"vibration",
"sensors",
"Fabry",
"reflector",
"constant distance",
"surface",
"distance",
"operation",
"regime",
"plane",
"resolution",
"brief description",
"devices",
"cavity",
"amplitude",
"gap",
"displacement",
"fibers",
"phase",
"objects",
"description",
"deviation",
"order",
"detection",
"end",
"feedback",
"vertical deviation",
"paper"
],
"name": "Fibre-Optic Fabry-Perot Sensor for Vibration and Profile Measurements",
"pagination": "838-838",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015204092"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-011-0035-9_58"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-011-0035-9_58",
"https://app.dimensions.ai/details/publication/pub.1015204092"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_449.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-94-011-0035-9_58"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0035-9_58'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0035-9_58'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0035-9_58'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-011-0035-9_58'
This table displays all metadata directly associated to this object as RDF triples.
119 TRIPLES
23 PREDICATES
72 URIs
65 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-94-011-0035-9_58 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N88b4cb4bd8bd4394b00dc1f9260262ad |
4 | ″ | schema:datePublished | 1995 |
5 | ″ | schema:datePublishedReg | 1995-01-01 |
6 | ″ | schema:description | In this paper we demonstrate the operation of a feedback stabilised quadrature phase-shifted extrinsic Fabry-Perot (FP) fibre-optic sensor for the remote detection of the amplitude and the relative phase of subnanometer vibrations and displacements. The surface of a measured object facing at a short distance the end of single-mode fibre, acts as a reflector, thereby creating an air gap of Fabry-Perot cavity. To provide the surface profile measurements the fibre end is vibrating laterally at a constant distance from the plane of object surface. A brief description of the device is given, and its operation is described. A resolution in the order of 10–11m for the vibration amplitude measurement was obtained. In the surface scanning regime a vertical deviations around 1 nm can be distinguished. |
7 | ″ | schema:editor | N9975ee55bbc44f86822e7140887debdc |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N8d95f8b44ab84057bacb7ee671e7e141 |
12 | ″ | schema:keywords | Fabry |
13 | ″ | ″ | Fabry-Perot cavity |
14 | ″ | ″ | Fabry-Perot fiber-optic sensors |
15 | ″ | ″ | Fiber-Optic Fabry |
16 | ″ | ″ | Perot Sensor |
17 | ″ | ″ | air gap |
18 | ″ | ″ | amplitude |
19 | ″ | ″ | amplitude measurements |
20 | ″ | ″ | brief description |
21 | ″ | ″ | cavity |
22 | ″ | ″ | constant distance |
23 | ″ | ″ | description |
24 | ″ | ″ | detection |
25 | ″ | ″ | deviation |
26 | ″ | ″ | devices |
27 | ″ | ″ | displacement |
28 | ″ | ″ | distance |
29 | ″ | ″ | end |
30 | ″ | ″ | feedback |
31 | ″ | ″ | fiber end |
32 | ″ | ″ | fiber optic sensors |
33 | ″ | ″ | fibers |
34 | ″ | ″ | gap |
35 | ″ | ″ | measurements |
36 | ″ | ″ | object surface |
37 | ″ | ″ | objects |
38 | ″ | ″ | operation |
39 | ″ | ″ | order |
40 | ″ | ″ | paper |
41 | ″ | ″ | phase |
42 | ″ | ″ | plane |
43 | ″ | ″ | profile measurements |
44 | ″ | ″ | reflector |
45 | ″ | ″ | regime |
46 | ″ | ″ | relative phase |
47 | ″ | ″ | remote detection |
48 | ″ | ″ | resolution |
49 | ″ | ″ | scanning regime |
50 | ″ | ″ | sensors |
51 | ″ | ″ | short distances |
52 | ″ | ″ | single-mode fiber |
53 | ″ | ″ | surface |
54 | ″ | ″ | surface profile measurement |
55 | ″ | ″ | vertical deviation |
56 | ″ | ″ | vibration |
57 | ″ | ″ | vibration amplitude measurements |
58 | ″ | schema:name | Fibre-Optic Fabry-Perot Sensor for Vibration and Profile Measurements |
59 | ″ | schema:pagination | 838-838 |
60 | ″ | schema:productId | N5e86363b809340e8b106cdf8e6d57a6e |
61 | ″ | ″ | Nc546b15bc86d40ba8d627f65903efcb7 |
62 | ″ | schema:publisher | N23f7291026f442f3899a13ce25ce25a1 |
63 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015204092 |
64 | ″ | ″ | https://doi.org/10.1007/978-94-011-0035-9_58 |
65 | ″ | schema:sdDatePublished | 2022-05-20T07:48 |
66 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
67 | ″ | schema:sdPublisher | N9fae17a9ecf540fda3180a3ed213a4de |
68 | ″ | schema:url | https://doi.org/10.1007/978-94-011-0035-9_58 |
69 | ″ | sgo:license | sg:explorer/license/ |
70 | ″ | sgo:sdDataset | chapters |
71 | ″ | rdf:type | schema:Chapter |
72 | N06fedc9cde9d4eada379f2ed873fea4a | schema:familyName | Soares |
73 | ″ | schema:givenName | Olivério D. D. |
74 | ″ | rdf:type | schema:Person |
75 | N23f7291026f442f3899a13ce25ce25a1 | schema:name | Springer Nature |
76 | ″ | rdf:type | schema:Organisation |
77 | N5e86363b809340e8b106cdf8e6d57a6e | schema:name | doi |
78 | ″ | schema:value | 10.1007/978-94-011-0035-9_58 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | N88b4cb4bd8bd4394b00dc1f9260262ad | rdf:first | sg:person.0677537705.39 |
81 | ″ | rdf:rest | Nd5a3787728aa4baeafd787f40a9189d7 |
82 | N8d95f8b44ab84057bacb7ee671e7e141 | schema:isbn | 978-94-010-4020-4 |
83 | ″ | ″ | 978-94-011-0035-9 |
84 | ″ | schema:name | Trends in Optical Fibre Metrology and Standards |
85 | ″ | rdf:type | schema:Book |
86 | N9975ee55bbc44f86822e7140887debdc | rdf:first | N06fedc9cde9d4eada379f2ed873fea4a |
87 | ″ | rdf:rest | rdf:nil |
88 | N9fae17a9ecf540fda3180a3ed213a4de | schema:name | Springer Nature - SN SciGraph project |
89 | ″ | rdf:type | schema:Organization |
90 | Nc546b15bc86d40ba8d627f65903efcb7 | schema:name | dimensions_id |
91 | ″ | schema:value | pub.1015204092 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | Nd5a3787728aa4baeafd787f40a9189d7 | rdf:first | sg:person.010370605545.18 |
94 | ″ | rdf:rest | Nf366c009dcf444a5b70e0fce76121edc |
95 | Ne02cc677e8094eb1a90e429868119c45 | schema:affiliation | grid-institutes:grid.6652.7 |
96 | ″ | schema:familyName | Stulpa |
97 | ″ | schema:givenName | J. |
98 | ″ | rdf:type | schema:Person |
99 | Nf366c009dcf444a5b70e0fce76121edc | rdf:first | Ne02cc677e8094eb1a90e429868119c45 |
100 | ″ | rdf:rest | rdf:nil |
101 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Physical Sciences |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Other Physical Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | sg:person.010370605545.18 | schema:affiliation | grid-institutes:grid.6652.7 |
108 | ″ | schema:familyName | Sochor |
109 | ″ | schema:givenName | V. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010370605545.18 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.0677537705.39 | schema:affiliation | grid-institutes:grid.6652.7 |
113 | ″ | schema:familyName | Paulicka |
114 | ″ | schema:givenName | I. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677537705.39 |
116 | ″ | rdf:type | schema:Person |
117 | grid-institutes:grid.6652.7 | schema:alternateName | Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics, Czech Technical University, Brehová 7, 115 19, Prague 1, Czech Republic |
118 | ″ | schema:name | Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics, Czech Technical University, Brehová 7, 115 19, Prague 1, Czech Republic |
119 | ″ | rdf:type | schema:Organization |