Application of Hill’s Lunar Method in General Planetary Theory View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1970

AUTHORS

V. A. Brumberg

ABSTRACT

This paper suggests an algorithm for the formal solution of the N planet problem in the rectangular heliocentric coordinates. The algorithm is based on the use of the intermediate quasiperiodic solution generalizing the variation curve of Hill. This particular solution is expressed by power series in terms of the planetary masses with quasi-periodic coefficients. It contains all the inequalities that do not depend on the orbital eccentricities and inclinations. The system of the nonlinear differential equations for the deviations of the true values of the coordinates from those corresponding to the intermediate solution has been further derived. The solution of this system is presented by the series in powers of the variables slowly changing with the time. The coefficients of these series are quasi-periodic functions dependent on the mean longitudes of the planets and developable in powers of the planetary masses. The behaviour of the slowly changing variables is described by the autonomous system of the nonlinear differential equations. This final system yields the secular perturbations in the planetary motion. More... »

PAGES

410-450

Book

TITLE

Periodic Orbits, Stability and Resonances

ISBN

978-94-010-3325-1
978-94-010-3323-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37

DOI

http://dx.doi.org/10.1007/978-94-010-3323-7_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005622088


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Theoretical Astronomy, Leningrad, U.S.S.R."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brumberg", 
        "givenName": "V. A.", 
        "id": "sg:person.013527777775.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1086/109964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058448574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/coll/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098741864"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1970", 
    "datePublishedReg": "1970-01-01", 
    "description": "This paper suggests an algorithm for the formal solution of the N planet problem in the rectangular heliocentric coordinates. The algorithm is based on the use of the intermediate quasiperiodic solution generalizing the variation curve of Hill. This particular solution is expressed by power series in terms of the planetary masses with quasi-periodic coefficients. It contains all the inequalities that do not depend on the orbital eccentricities and inclinations. The system of the nonlinear differential equations for the deviations of the true values of the coordinates from those corresponding to the intermediate solution has been further derived. The solution of this system is presented by the series in powers of the variables slowly changing with the time. The coefficients of these series are quasi-periodic functions dependent on the mean longitudes of the planets and developable in powers of the planetary masses. The behaviour of the slowly changing variables is described by the autonomous system of the nonlinear differential equations. This final system yields the secular perturbations in the planetary motion.", 
    "editor": [
      {
        "familyName": "Giacaglia", 
        "givenName": "G. E. O.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-3323-7_37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-3325-1", 
        "978-94-010-3323-7"
      ], 
      "name": "Periodic Orbits, Stability and Resonances", 
      "type": "Book"
    }, 
    "name": "Application of Hill\u2019s Lunar Method in General Planetary Theory", 
    "pagination": "410-450", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-3323-7_37"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ac982ebcc02518716f63d039094623f3ff18689d43bfd3b4e969e23a82f54a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005622088"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-3323-7_37", 
      "https://app.dimensions.ai/details/publication/pub.1005622088"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000559.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-94-010-3323-7_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37'


 

This table displays all metadata directly associated to this object as RDF triples.

70 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-3323-7_37 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0935d61dbb064bc180b851435e1364e0
4 schema:citation https://doi.org/10.1086/109964
5 https://doi.org/10.1090/coll/009
6 schema:datePublished 1970
7 schema:datePublishedReg 1970-01-01
8 schema:description This paper suggests an algorithm for the formal solution of the N planet problem in the rectangular heliocentric coordinates. The algorithm is based on the use of the intermediate quasiperiodic solution generalizing the variation curve of Hill. This particular solution is expressed by power series in terms of the planetary masses with quasi-periodic coefficients. It contains all the inequalities that do not depend on the orbital eccentricities and inclinations. The system of the nonlinear differential equations for the deviations of the true values of the coordinates from those corresponding to the intermediate solution has been further derived. The solution of this system is presented by the series in powers of the variables slowly changing with the time. The coefficients of these series are quasi-periodic functions dependent on the mean longitudes of the planets and developable in powers of the planetary masses. The behaviour of the slowly changing variables is described by the autonomous system of the nonlinear differential equations. This final system yields the secular perturbations in the planetary motion.
9 schema:editor N48f1467e4ad84629bf1d9e8460f16f47
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N63772ac9dfd64e6cb0e6349869d68274
14 schema:name Application of Hill’s Lunar Method in General Planetary Theory
15 schema:pagination 410-450
16 schema:productId N90f3b4d1356e44709e0ef8c77ed8c007
17 Nd0c1e11009fb47f488cfb2522bc24a09
18 Ne0a6fa6a155c410ea094bd8c6f5258df
19 schema:publisher N3843225e373740eeb1513f2116d6215f
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005622088
21 https://doi.org/10.1007/978-94-010-3323-7_37
22 schema:sdDatePublished 2019-04-15T15:54
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N65c451bf6a554a938ed8f7abf469c292
25 schema:url http://link.springer.com/10.1007/978-94-010-3323-7_37
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N0935d61dbb064bc180b851435e1364e0 rdf:first sg:person.013527777775.06
30 rdf:rest rdf:nil
31 N1a9f66c5a2a9425ea94aeb85e0285c6f schema:name Institute of Theoretical Astronomy, Leningrad, U.S.S.R.
32 rdf:type schema:Organization
33 N3843225e373740eeb1513f2116d6215f schema:location Dordrecht
34 schema:name Springer Netherlands
35 rdf:type schema:Organisation
36 N48f1467e4ad84629bf1d9e8460f16f47 rdf:first N9dca5ced3cc9431380ff9cfbe74ba1c6
37 rdf:rest rdf:nil
38 N63772ac9dfd64e6cb0e6349869d68274 schema:isbn 978-94-010-3323-7
39 978-94-010-3325-1
40 schema:name Periodic Orbits, Stability and Resonances
41 rdf:type schema:Book
42 N65c451bf6a554a938ed8f7abf469c292 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N90f3b4d1356e44709e0ef8c77ed8c007 schema:name readcube_id
45 schema:value 1ac982ebcc02518716f63d039094623f3ff18689d43bfd3b4e969e23a82f54a0
46 rdf:type schema:PropertyValue
47 N9dca5ced3cc9431380ff9cfbe74ba1c6 schema:familyName Giacaglia
48 schema:givenName G. E. O.
49 rdf:type schema:Person
50 Nd0c1e11009fb47f488cfb2522bc24a09 schema:name doi
51 schema:value 10.1007/978-94-010-3323-7_37
52 rdf:type schema:PropertyValue
53 Ne0a6fa6a155c410ea094bd8c6f5258df schema:name dimensions_id
54 schema:value pub.1005622088
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:person.013527777775.06 schema:affiliation N1a9f66c5a2a9425ea94aeb85e0285c6f
63 schema:familyName Brumberg
64 schema:givenName V. A.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06
66 rdf:type schema:Person
67 https://doi.org/10.1086/109964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448574
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1090/coll/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741864
70 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...