Application of Hill’s Lunar Method in General Planetary Theory View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1970

AUTHORS

V. A. Brumberg

ABSTRACT

This paper suggests an algorithm for the formal solution of the N planet problem in the rectangular heliocentric coordinates. The algorithm is based on the use of the intermediate quasiperiodic solution generalizing the variation curve of Hill. This particular solution is expressed by power series in terms of the planetary masses with quasi-periodic coefficients. It contains all the inequalities that do not depend on the orbital eccentricities and inclinations. The system of the nonlinear differential equations for the deviations of the true values of the coordinates from those corresponding to the intermediate solution has been further derived. The solution of this system is presented by the series in powers of the variables slowly changing with the time. The coefficients of these series are quasi-periodic functions dependent on the mean longitudes of the planets and developable in powers of the planetary masses. The behaviour of the slowly changing variables is described by the autonomous system of the nonlinear differential equations. This final system yields the secular perturbations in the planetary motion. More... »

PAGES

410-450

Book

TITLE

Periodic Orbits, Stability and Resonances

ISBN

978-94-010-3325-1
978-94-010-3323-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37

DOI

http://dx.doi.org/10.1007/978-94-010-3323-7_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005622088


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical Astronomy, Leningrad, U.S.S.R.", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Theoretical Astronomy, Leningrad, U.S.S.R."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brumberg", 
        "givenName": "V. A.", 
        "id": "sg:person.013527777775.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1970", 
    "datePublishedReg": "1970-01-01", 
    "description": "This paper suggests an algorithm for the formal solution of the N planet problem in the rectangular heliocentric coordinates. The algorithm is based on the use of the intermediate quasiperiodic solution generalizing the variation curve of Hill. This particular solution is expressed by power series in terms of the planetary masses with quasi-periodic coefficients. It contains all the inequalities that do not depend on the orbital eccentricities and inclinations. The system of the nonlinear differential equations for the deviations of the true values of the coordinates from those corresponding to the intermediate solution has been further derived. The solution of this system is presented by the series in powers of the variables slowly changing with the time. The coefficients of these series are quasi-periodic functions dependent on the mean longitudes of the planets and developable in powers of the planetary masses. The behaviour of the slowly changing variables is described by the autonomous system of the nonlinear differential equations. This final system yields the secular perturbations in the planetary motion.", 
    "editor": [
      {
        "familyName": "Giacaglia", 
        "givenName": "G. E. O.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-3323-7_37", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-3325-1", 
        "978-94-010-3323-7"
      ], 
      "name": "Periodic Orbits, Stability and Resonances", 
      "type": "Book"
    }, 
    "keywords": [
      "nonlinear differential equations", 
      "differential equations", 
      "quasi-periodic coefficients", 
      "general planetary theory", 
      "quasi-periodic functions", 
      "lunar method", 
      "quasiperiodic solutions", 
      "particular solutions", 
      "formal solution", 
      "power series", 
      "planetary theory", 
      "heliocentric coordinates", 
      "intermediate solution", 
      "secular perturbations", 
      "autonomous systems", 
      "planet problem", 
      "equations", 
      "planetary motion", 
      "true value", 
      "solution", 
      "algorithm", 
      "final system", 
      "coordinates", 
      "mean longitude", 
      "planetary mass", 
      "variables", 
      "inequality", 
      "system", 
      "orbital eccentricity", 
      "problem", 
      "perturbations", 
      "theory", 
      "coefficient", 
      "motion", 
      "power", 
      "applications", 
      "terms", 
      "function", 
      "series", 
      "deviation", 
      "variation curve", 
      "eccentricity", 
      "curves", 
      "behavior", 
      "time", 
      "values", 
      "use", 
      "mass", 
      "longitude", 
      "planets", 
      "inclination", 
      "Hill", 
      "paper", 
      "method", 
      "rectangular heliocentric coordinates", 
      "intermediate quasiperiodic solution", 
      "Hill\u2019s Lunar Method"
    ], 
    "name": "Application of Hill\u2019s Lunar Method in General Planetary Theory", 
    "pagination": "410-450", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005622088"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-3323-7_37"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-3323-7_37", 
      "https://app.dimensions.ai/details/publication/pub.1005622088"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_25.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-010-3323-7_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-3323-7_37'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-3323-7_37 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbe1e4b760c2b47609e4880b9a641ef40
4 schema:datePublished 1970
5 schema:datePublishedReg 1970-01-01
6 schema:description This paper suggests an algorithm for the formal solution of the N planet problem in the rectangular heliocentric coordinates. The algorithm is based on the use of the intermediate quasiperiodic solution generalizing the variation curve of Hill. This particular solution is expressed by power series in terms of the planetary masses with quasi-periodic coefficients. It contains all the inequalities that do not depend on the orbital eccentricities and inclinations. The system of the nonlinear differential equations for the deviations of the true values of the coordinates from those corresponding to the intermediate solution has been further derived. The solution of this system is presented by the series in powers of the variables slowly changing with the time. The coefficients of these series are quasi-periodic functions dependent on the mean longitudes of the planets and developable in powers of the planetary masses. The behaviour of the slowly changing variables is described by the autonomous system of the nonlinear differential equations. This final system yields the secular perturbations in the planetary motion.
7 schema:editor Ncc0fe2341faa4b4c9b35619c8544983f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4f1da0e5e0fd4f23b98bcb76756d7257
12 schema:keywords Hill
13 Hill’s Lunar Method
14 algorithm
15 applications
16 autonomous systems
17 behavior
18 coefficient
19 coordinates
20 curves
21 deviation
22 differential equations
23 eccentricity
24 equations
25 final system
26 formal solution
27 function
28 general planetary theory
29 heliocentric coordinates
30 inclination
31 inequality
32 intermediate quasiperiodic solution
33 intermediate solution
34 longitude
35 lunar method
36 mass
37 mean longitude
38 method
39 motion
40 nonlinear differential equations
41 orbital eccentricity
42 paper
43 particular solutions
44 perturbations
45 planet problem
46 planetary mass
47 planetary motion
48 planetary theory
49 planets
50 power
51 power series
52 problem
53 quasi-periodic coefficients
54 quasi-periodic functions
55 quasiperiodic solutions
56 rectangular heliocentric coordinates
57 secular perturbations
58 series
59 solution
60 system
61 terms
62 theory
63 time
64 true value
65 use
66 values
67 variables
68 variation curve
69 schema:name Application of Hill’s Lunar Method in General Planetary Theory
70 schema:pagination 410-450
71 schema:productId N26b10edb2d7644f58774078ceafd09c2
72 N7e38ce3caa5d4286b87d0945dd5f6daf
73 schema:publisher Nc134ed31eda64ebe89c636bf9c353dba
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005622088
75 https://doi.org/10.1007/978-94-010-3323-7_37
76 schema:sdDatePublished 2021-11-01T18:52
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N49a12f054eb341798dc7e2753900ae27
79 schema:url https://doi.org/10.1007/978-94-010-3323-7_37
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N26b10edb2d7644f58774078ceafd09c2 schema:name dimensions_id
84 schema:value pub.1005622088
85 rdf:type schema:PropertyValue
86 N49a12f054eb341798dc7e2753900ae27 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N4f1da0e5e0fd4f23b98bcb76756d7257 schema:isbn 978-94-010-3323-7
89 978-94-010-3325-1
90 schema:name Periodic Orbits, Stability and Resonances
91 rdf:type schema:Book
92 N78d8ab8174a6435dabfdf12e276b7f3b schema:familyName Giacaglia
93 schema:givenName G. E. O.
94 rdf:type schema:Person
95 N7e38ce3caa5d4286b87d0945dd5f6daf schema:name doi
96 schema:value 10.1007/978-94-010-3323-7_37
97 rdf:type schema:PropertyValue
98 Nbe1e4b760c2b47609e4880b9a641ef40 rdf:first sg:person.013527777775.06
99 rdf:rest rdf:nil
100 Nc134ed31eda64ebe89c636bf9c353dba schema:name Springer Nature
101 rdf:type schema:Organisation
102 Ncc0fe2341faa4b4c9b35619c8544983f rdf:first N78d8ab8174a6435dabfdf12e276b7f3b
103 rdf:rest rdf:nil
104 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
108 schema:name Pure Mathematics
109 rdf:type schema:DefinedTerm
110 sg:person.013527777775.06 schema:affiliation grid-institutes:None
111 schema:familyName Brumberg
112 schema:givenName V. A.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06
114 rdf:type schema:Person
115 grid-institutes:None schema:alternateName Institute of Theoretical Astronomy, Leningrad, U.S.S.R.
116 schema:name Institute of Theoretical Astronomy, Leningrad, U.S.S.R.
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...