Determination of Planetary Masses from the Motions of Comets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1972

AUTHORS

W. J. Klepczynski

ABSTRACT

A brief survey is given of past determinations of the masses of the principal planets from analyses of the motions of comets. Some numerical experiments using comets which have close approaches to Jupiter are made. As a result of these experiments, it is concluded that the conventional least squares solution for the correction to the mass of Jupiter is inadequate for comets which have a close approach to Jupiter. It is further concluded that perhaps, in some cases, the apparent presence of nongravitational forces is merely a manifestation of the failure of the conventional orbit correction process to adjust correctly the orbits of objects which undergo very large perturbations, and it also may be a consequence of errors in the adopted planetary masses. It is suggested that the use of partial derivatives obtained through the numerical integration of the variational equations may overcome the difficulties. More... »

PAGES

209-226

Book

TITLE

The Motion, Evolution of Orbits, and Origin of Comets

ISBN

978-94-010-2875-2
978-94-010-2873-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-2873-8_39

DOI

http://dx.doi.org/10.1007/978-94-010-2873-8_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019195223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "U.S. Naval Observatory, Washington, D.C., USA", 
          "id": "http://www.grid.ac/institutes/grid.440354.2", 
          "name": [
            "U.S. Naval Observatory, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klepczynski", 
        "givenName": "W. J.", 
        "id": "sg:person.07413464431.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413464431.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1972", 
    "datePublishedReg": "1972-01-01", 
    "description": "A brief survey is given of past determinations of the masses of the principal planets from analyses of the motions of comets. Some numerical experiments using comets which have close approaches to Jupiter are made. As a result of these experiments, it is concluded that the conventional least squares solution for the correction to the mass of Jupiter is inadequate for comets which have a close approach to Jupiter. It is further concluded that perhaps, in some cases, the apparent presence of nongravitational forces is merely a manifestation of the failure of the conventional orbit correction process to adjust correctly the orbits of objects which undergo very large perturbations, and it also may be a consequence of errors in the adopted planetary masses. It is suggested that the use of partial derivatives obtained through the numerical integration of the variational equations may overcome the difficulties.", 
    "editor": [
      {
        "familyName": "Chebotarev", 
        "givenName": "G. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kazimirchak-Polonskaya", 
        "givenName": "E. I.", 
        "type": "Person"
      }, 
      {
        "familyName": "Marsden", 
        "givenName": "B. G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-2873-8_39", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-2875-2", 
        "978-94-010-2873-8"
      ], 
      "name": "The Motion, Evolution of Orbits, and Origin of Comets", 
      "type": "Book"
    }, 
    "keywords": [
      "conventional least squares solution", 
      "least squares solution", 
      "variational equations", 
      "partial derivatives", 
      "numerical experiments", 
      "squares solution", 
      "numerical integration", 
      "motion of comets", 
      "planetary mass", 
      "principal planets", 
      "large perturbations", 
      "closest approach", 
      "mass of Jupiter", 
      "brief survey", 
      "Jupiter", 
      "nongravitational forces", 
      "equations", 
      "motion", 
      "approach", 
      "correction process", 
      "orbit", 
      "perturbations", 
      "comets", 
      "solution", 
      "consequences of errors", 
      "error", 
      "planets", 
      "mass", 
      "apparent presence", 
      "derivatives", 
      "integration", 
      "objects", 
      "experiments", 
      "difficulties", 
      "cases", 
      "determination", 
      "analysis", 
      "results", 
      "correction", 
      "force", 
      "process", 
      "use", 
      "consequences", 
      "presence", 
      "survey", 
      "failure", 
      "manifestations", 
      "orbits of objects", 
      "past determinations", 
      "conventional orbit correction process", 
      "orbit correction process"
    ], 
    "name": "Determination of Planetary Masses from the Motions of Comets", 
    "pagination": "209-226", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019195223"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-2873-8_39"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-2873-8_39", 
      "https://app.dimensions.ai/details/publication/pub.1019195223"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_7.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-010-2873-8_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-2873-8_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-2873-8_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-2873-8_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-2873-8_39'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-2873-8_39 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4a0cbc3823874eb3964d70936240a822
4 schema:datePublished 1972
5 schema:datePublishedReg 1972-01-01
6 schema:description A brief survey is given of past determinations of the masses of the principal planets from analyses of the motions of comets. Some numerical experiments using comets which have close approaches to Jupiter are made. As a result of these experiments, it is concluded that the conventional least squares solution for the correction to the mass of Jupiter is inadequate for comets which have a close approach to Jupiter. It is further concluded that perhaps, in some cases, the apparent presence of nongravitational forces is merely a manifestation of the failure of the conventional orbit correction process to adjust correctly the orbits of objects which undergo very large perturbations, and it also may be a consequence of errors in the adopted planetary masses. It is suggested that the use of partial derivatives obtained through the numerical integration of the variational equations may overcome the difficulties.
7 schema:editor Nff2c1077d48a480c83f4724d53076e5d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ncc9d10c39bde4cbfb93b0f2c29725c7a
12 schema:keywords Jupiter
13 analysis
14 apparent presence
15 approach
16 brief survey
17 cases
18 closest approach
19 comets
20 consequences
21 consequences of errors
22 conventional least squares solution
23 conventional orbit correction process
24 correction
25 correction process
26 derivatives
27 determination
28 difficulties
29 equations
30 error
31 experiments
32 failure
33 force
34 integration
35 large perturbations
36 least squares solution
37 manifestations
38 mass
39 mass of Jupiter
40 motion
41 motion of comets
42 nongravitational forces
43 numerical experiments
44 numerical integration
45 objects
46 orbit
47 orbit correction process
48 orbits of objects
49 partial derivatives
50 past determinations
51 perturbations
52 planetary mass
53 planets
54 presence
55 principal planets
56 process
57 results
58 solution
59 squares solution
60 survey
61 use
62 variational equations
63 schema:name Determination of Planetary Masses from the Motions of Comets
64 schema:pagination 209-226
65 schema:productId N922f78bc57df428e9fcc0b1159739100
66 Nfd83c440abd2410bba1a4a6d2e6f94ef
67 schema:publisher N8976ae2b316e41bf9923f81151b2ffb6
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019195223
69 https://doi.org/10.1007/978-94-010-2873-8_39
70 schema:sdDatePublished 2022-01-01T19:27
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nd9764c7dc67f488b81a4c9442455332f
73 schema:url https://doi.org/10.1007/978-94-010-2873-8_39
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N09c46ba8da3948e893f4daa71fb92b33 schema:familyName Kazimirchak-Polonskaya
78 schema:givenName E. I.
79 rdf:type schema:Person
80 N389b0d60fe2041729585934154f961fc rdf:first N7917539872374811b2a9ce4b05e38166
81 rdf:rest rdf:nil
82 N4a0cbc3823874eb3964d70936240a822 rdf:first sg:person.07413464431.63
83 rdf:rest rdf:nil
84 N7917539872374811b2a9ce4b05e38166 schema:familyName Marsden
85 schema:givenName B. G.
86 rdf:type schema:Person
87 N86fe37b460a6455486c666e62eca6939 rdf:first N09c46ba8da3948e893f4daa71fb92b33
88 rdf:rest N389b0d60fe2041729585934154f961fc
89 N8976ae2b316e41bf9923f81151b2ffb6 schema:name Springer Nature
90 rdf:type schema:Organisation
91 N922f78bc57df428e9fcc0b1159739100 schema:name dimensions_id
92 schema:value pub.1019195223
93 rdf:type schema:PropertyValue
94 Nbf07290e05284a43b1112d16fc6c92a0 schema:familyName Chebotarev
95 schema:givenName G. A.
96 rdf:type schema:Person
97 Ncc9d10c39bde4cbfb93b0f2c29725c7a schema:isbn 978-94-010-2873-8
98 978-94-010-2875-2
99 schema:name The Motion, Evolution of Orbits, and Origin of Comets
100 rdf:type schema:Book
101 Nd9764c7dc67f488b81a4c9442455332f schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nfd83c440abd2410bba1a4a6d2e6f94ef schema:name doi
104 schema:value 10.1007/978-94-010-2873-8_39
105 rdf:type schema:PropertyValue
106 Nff2c1077d48a480c83f4724d53076e5d rdf:first Nbf07290e05284a43b1112d16fc6c92a0
107 rdf:rest N86fe37b460a6455486c666e62eca6939
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
112 schema:name Numerical and Computational Mathematics
113 rdf:type schema:DefinedTerm
114 sg:person.07413464431.63 schema:affiliation grid-institutes:grid.440354.2
115 schema:familyName Klepczynski
116 schema:givenName W. J.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413464431.63
118 rdf:type schema:Person
119 grid-institutes:grid.440354.2 schema:alternateName U.S. Naval Observatory, Washington, D.C., USA
120 schema:name U.S. Naval Observatory, Washington, D.C., USA
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...