Time Regularization and Stabilization of an Adams-Moulton-Cowell Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1976

AUTHORS

N. Borderies

ABSTRACT

In geodesy we have multistep integrators such as Cowell’s of fixed order 8. Unfortunately, these methods suffer from a large error along the trace. Therefore, it is not possible to integrate the motion of an artificial satellite over thousands of revolutions with sufficient accuracy.

PAGES

331-332

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-1493-9_26

DOI

http://dx.doi.org/10.1007/978-94-010-1493-9_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040676290


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Groupe de Recherche de G\u00e9od\u00e9sie Spatiale, Centre National d\u2019Etudes Spatiales, Toulouse, France", 
          "id": "http://www.grid.ac/institutes/grid.13349.3c", 
          "name": [
            "Groupe de Recherche de G\u00e9od\u00e9sie Spatiale, Centre National d\u2019Etudes Spatiales, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borderies", 
        "givenName": "N.", 
        "id": "sg:person.014765272656.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014765272656.72"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1976", 
    "datePublishedReg": "1976-01-01", 
    "description": "In geodesy we have multistep integrators such as Cowell\u2019s of fixed order 8. Unfortunately, these methods suffer from a large error along the trace. Therefore, it is not possible to integrate the motion of an artificial satellite over thousands of revolutions with sufficient accuracy.", 
    "editor": [
      {
        "familyName": "Szebehely", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tapley", 
        "givenName": "B. D.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-1493-9_26", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-1495-3", 
        "978-94-010-1493-9"
      ], 
      "name": "Long-Time Predictions in Dynamics", 
      "type": "Book"
    }, 
    "keywords": [
      "algorithm", 
      "Adams-Moulton", 
      "regularization", 
      "sufficient accuracy", 
      "accuracy", 
      "large errors", 
      "thousands", 
      "error", 
      "traces", 
      "artificial satellites", 
      "integrator", 
      "method", 
      "motion", 
      "satellite", 
      "revolution", 
      "order 8", 
      "geodesy", 
      "time regularization", 
      "stabilization", 
      "Cowell", 
      "multistep integrators", 
      "thousands of revolutions", 
      "Cowell Algorithm"
    ], 
    "name": "Time Regularization and Stabilization of an Adams-Moulton-Cowell Algorithm", 
    "pagination": "331-332", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040676290"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-1493-9_26"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-1493-9_26", 
      "https://app.dimensions.ai/details/publication/pub.1040676290"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_30.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-010-1493-9_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-1493-9_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-1493-9_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-1493-9_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-1493-9_26'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      23 PREDICATES      49 URIs      42 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-1493-9_26 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N204a81a362394331af25fc6b37d789e0
4 schema:datePublished 1976
5 schema:datePublishedReg 1976-01-01
6 schema:description In geodesy we have multistep integrators such as Cowell’s of fixed order 8. Unfortunately, these methods suffer from a large error along the trace. Therefore, it is not possible to integrate the motion of an artificial satellite over thousands of revolutions with sufficient accuracy.
7 schema:editor N623e8a0e69b8492b9fe92cf490734c9b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4f9ad59bdc7c4a11817104a9fab5813e
12 schema:keywords Adams-Moulton
13 Cowell
14 Cowell Algorithm
15 accuracy
16 algorithm
17 artificial satellites
18 error
19 geodesy
20 integrator
21 large errors
22 method
23 motion
24 multistep integrators
25 order 8
26 regularization
27 revolution
28 satellite
29 stabilization
30 sufficient accuracy
31 thousands
32 thousands of revolutions
33 time regularization
34 traces
35 schema:name Time Regularization and Stabilization of an Adams-Moulton-Cowell Algorithm
36 schema:pagination 331-332
37 schema:productId N9ce97016310c4d38b146fa4910d9802b
38 Nb7cc691b67a14d2d9be97922aaa25ef5
39 schema:publisher N7e49fa0a2e4f46e48c937ac19e01af9e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040676290
41 https://doi.org/10.1007/978-94-010-1493-9_26
42 schema:sdDatePublished 2022-01-01T19:17
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N9224130854344ef2b1ba99869c7286c2
45 schema:url https://doi.org/10.1007/978-94-010-1493-9_26
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N204a81a362394331af25fc6b37d789e0 rdf:first sg:person.014765272656.72
50 rdf:rest rdf:nil
51 N4f9ad59bdc7c4a11817104a9fab5813e schema:isbn 978-94-010-1493-9
52 978-94-010-1495-3
53 schema:name Long-Time Predictions in Dynamics
54 rdf:type schema:Book
55 N623e8a0e69b8492b9fe92cf490734c9b rdf:first Na01ac19e0be145ccac38297818706100
56 rdf:rest N9b7adfe39d704bc697e7217e6c081677
57 N70be771168af4ec0944f38156541121e schema:familyName Tapley
58 schema:givenName B. D.
59 rdf:type schema:Person
60 N7e49fa0a2e4f46e48c937ac19e01af9e schema:name Springer Nature
61 rdf:type schema:Organisation
62 N9224130854344ef2b1ba99869c7286c2 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N9b7adfe39d704bc697e7217e6c081677 rdf:first N70be771168af4ec0944f38156541121e
65 rdf:rest rdf:nil
66 N9ce97016310c4d38b146fa4910d9802b schema:name dimensions_id
67 schema:value pub.1040676290
68 rdf:type schema:PropertyValue
69 Na01ac19e0be145ccac38297818706100 schema:familyName Szebehely
70 schema:givenName V.
71 rdf:type schema:Person
72 Nb7cc691b67a14d2d9be97922aaa25ef5 schema:name doi
73 schema:value 10.1007/978-94-010-1493-9_26
74 rdf:type schema:PropertyValue
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:person.014765272656.72 schema:affiliation grid-institutes:grid.13349.3c
82 schema:familyName Borderies
83 schema:givenName N.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014765272656.72
85 rdf:type schema:Person
86 grid-institutes:grid.13349.3c schema:alternateName Groupe de Recherche de Géodésie Spatiale, Centre National d’Etudes Spatiales, Toulouse, France
87 schema:name Groupe de Recherche de Géodésie Spatiale, Centre National d’Etudes Spatiales, Toulouse, France
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...