The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

C.-J. Lenz , F. Müller , K. H. Schlünzen

ABSTRACT

Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data. More... »

PAGES

287-295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31

DOI

http://dx.doi.org/10.1007/978-94-010-0932-4_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032479498


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck Institute for Meteorology, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck Institute for Meteorology, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lenz", 
        "givenName": "C.-J.", 
        "id": "sg:person.016576730165.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576730165.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "F.", 
        "id": "sg:person.013535206074.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013535206074.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schl\u00fcnzen", 
        "givenName": "K. H.", 
        "id": "sg:person.012560545423.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data.", 
    "editor": [
      {
        "familyName": "Sokhi", 
        "givenName": "Ranjeet S.", 
        "type": "Person"
      }, 
      {
        "familyName": "San Jos\u00e9", 
        "givenName": "Roberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Moussiopoulos", 
        "givenName": "Nicolas", 
        "type": "Person"
      }, 
      {
        "familyName": "Berkowicz", 
        "givenName": "Ruwim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-0932-4_31", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-3796-9", 
        "978-94-010-0932-4"
      ], 
      "name": "Urban Air Quality: Measurement, Modelling and Management", 
      "type": "Book"
    }, 
    "keywords": [
      "chemistry transport model", 
      "mesoscale chemistry transport model", 
      "chemical quantities", 
      "meteorological part", 
      "NOx concentrations", 
      "transport model", 
      "correct description", 
      "ozone", 
      "emission rates", 
      "sensitivity", 
      "concentration", 
      "measurements", 
      "good results", 
      "airplane measurements", 
      "simulations", 
      "results", 
      "quantity", 
      "conditions", 
      "performance", 
      "meteorological conditions", 
      "model simulations", 
      "values", 
      "field", 
      "respect", 
      "model results", 
      "rate", 
      "data", 
      "model", 
      "description", 
      "quality", 
      "part", 
      "campaign", 
      "large scale models", 
      "nesting", 
      "poor quality", 
      "boundary values", 
      "scale model", 
      "one-way", 
      "driving data", 
      "high resolution meteorology-chemistry transport model", 
      "resolution meteorology-chemistry transport model", 
      "meteorology-chemistry transport model", 
      "TRACT field", 
      "large scale driving data", 
      "scale driving data"
    ], 
    "name": "The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values", 
    "pagination": "287-295", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032479498"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-0932-4_31"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-0932-4_31", 
      "https://app.dimensions.ai/details/publication/pub.1032479498"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_137.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-010-0932-4_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      71 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-0932-4_31 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N5698a8f67fa44b9aa367f1e2eeb603d5
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data.
7 schema:editor Neb094111a81b4a6b95343409d7a6ea71
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3479dc42210b4cb4bad5a1b607238f65
12 schema:keywords NOx concentrations
13 TRACT field
14 airplane measurements
15 boundary values
16 campaign
17 chemical quantities
18 chemistry transport model
19 concentration
20 conditions
21 correct description
22 data
23 description
24 driving data
25 emission rates
26 field
27 good results
28 high resolution meteorology-chemistry transport model
29 large scale driving data
30 large scale models
31 measurements
32 mesoscale chemistry transport model
33 meteorological conditions
34 meteorological part
35 meteorology-chemistry transport model
36 model
37 model results
38 model simulations
39 nesting
40 one-way
41 ozone
42 part
43 performance
44 poor quality
45 quality
46 quantity
47 rate
48 resolution meteorology-chemistry transport model
49 respect
50 results
51 scale driving data
52 scale model
53 sensitivity
54 simulations
55 transport model
56 values
57 schema:name The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values
58 schema:pagination 287-295
59 schema:productId N6012091ba28745119467fe128b946c39
60 N8e14619a0aeb4399a1b864ba1b10a5d8
61 schema:publisher N47f44c28caaa4955938d58349e97ffc6
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032479498
63 https://doi.org/10.1007/978-94-010-0932-4_31
64 schema:sdDatePublished 2022-01-01T19:08
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N61206013377c4393a244e888f9917892
67 schema:url https://doi.org/10.1007/978-94-010-0932-4_31
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N1b2d0f48b823444fb53ff7bb4947a947 rdf:first N89e0a0a9863541ceb3eb59ea48a5325c
72 rdf:rest Ndec3863064e4481a99c5ef49490d7bce
73 N24846e18d8ee42ffba678ba76371a62d rdf:first sg:person.013535206074.60
74 rdf:rest Nf64435a846f64738a0c98a22676bc3a1
75 N304af45e178c4fabb273fd3c12947221 schema:familyName Sokhi
76 schema:givenName Ranjeet S.
77 rdf:type schema:Person
78 N3479dc42210b4cb4bad5a1b607238f65 schema:isbn 978-94-010-0932-4
79 978-94-010-3796-9
80 schema:name Urban Air Quality: Measurement, Modelling and Management
81 rdf:type schema:Book
82 N45f74c91279a4b29926c2ef4766769bb rdf:first Na9a6ca760df447ffb3f2057ba30b35df
83 rdf:rest rdf:nil
84 N47f44c28caaa4955938d58349e97ffc6 schema:name Springer Nature
85 rdf:type schema:Organisation
86 N5698a8f67fa44b9aa367f1e2eeb603d5 rdf:first sg:person.016576730165.08
87 rdf:rest N24846e18d8ee42ffba678ba76371a62d
88 N6012091ba28745119467fe128b946c39 schema:name dimensions_id
89 schema:value pub.1032479498
90 rdf:type schema:PropertyValue
91 N61206013377c4393a244e888f9917892 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N89e0a0a9863541ceb3eb59ea48a5325c schema:familyName San José
94 schema:givenName Roberto
95 rdf:type schema:Person
96 N8e14619a0aeb4399a1b864ba1b10a5d8 schema:name doi
97 schema:value 10.1007/978-94-010-0932-4_31
98 rdf:type schema:PropertyValue
99 Na9a6ca760df447ffb3f2057ba30b35df schema:familyName Berkowicz
100 schema:givenName Ruwim
101 rdf:type schema:Person
102 Nbeab9c0700af4ff58622ab1cfa17bc94 schema:familyName Moussiopoulos
103 schema:givenName Nicolas
104 rdf:type schema:Person
105 Ndec3863064e4481a99c5ef49490d7bce rdf:first Nbeab9c0700af4ff58622ab1cfa17bc94
106 rdf:rest N45f74c91279a4b29926c2ef4766769bb
107 Neb094111a81b4a6b95343409d7a6ea71 rdf:first N304af45e178c4fabb273fd3c12947221
108 rdf:rest N1b2d0f48b823444fb53ff7bb4947a947
109 Nf64435a846f64738a0c98a22676bc3a1 rdf:first sg:person.012560545423.41
110 rdf:rest rdf:nil
111 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
112 schema:name Chemical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
115 schema:name Theoretical and Computational Chemistry
116 rdf:type schema:DefinedTerm
117 sg:person.012560545423.41 schema:affiliation grid-institutes:grid.9026.d
118 schema:familyName Schlünzen
119 schema:givenName K. H.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41
121 rdf:type schema:Person
122 sg:person.013535206074.60 schema:affiliation grid-institutes:grid.9026.d
123 schema:familyName Müller
124 schema:givenName F.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013535206074.60
126 rdf:type schema:Person
127 sg:person.016576730165.08 schema:affiliation grid-institutes:grid.450268.d
128 schema:familyName Lenz
129 schema:givenName C.-J.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576730165.08
131 rdf:type schema:Person
132 grid-institutes:grid.450268.d schema:alternateName Max-Planck Institute for Meteorology, Bundesstr. 55, 20146, Hamburg, Germany
133 schema:name Max-Planck Institute for Meteorology, Bundesstr. 55, 20146, Hamburg, Germany
134 rdf:type schema:Organization
135 grid-institutes:grid.9026.d schema:alternateName Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany
136 schema:name Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...