The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

C.-J. Lenz , F. Müller , K. H. Schlünzen

ABSTRACT

Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data. More... »

PAGES

287-295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31

DOI

http://dx.doi.org/10.1007/978-94-010-0932-4_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032479498


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck Institute for Meteorology, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck Institute for Meteorology, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lenz", 
        "givenName": "C.-J.", 
        "id": "sg:person.016576730165.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576730165.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "F.", 
        "id": "sg:person.013535206074.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013535206074.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schl\u00fcnzen", 
        "givenName": "K. H.", 
        "id": "sg:person.012560545423.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data.", 
    "editor": [
      {
        "familyName": "Sokhi", 
        "givenName": "Ranjeet S.", 
        "type": "Person"
      }, 
      {
        "familyName": "San Jos\u00e9", 
        "givenName": "Roberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Moussiopoulos", 
        "givenName": "Nicolas", 
        "type": "Person"
      }, 
      {
        "familyName": "Berkowicz", 
        "givenName": "Ruwim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-0932-4_31", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-3796-9", 
        "978-94-010-0932-4"
      ], 
      "name": "Urban Air Quality: Measurement, Modelling and Management", 
      "type": "Book"
    }, 
    "keywords": [
      "chemistry transport model", 
      "chemical quantities", 
      "mesoscale chemistry transport model", 
      "meteorological part", 
      "correct description", 
      "transport model", 
      "NOx concentrations", 
      "ozone", 
      "large-scale driving data", 
      "emission rates", 
      "sensitivity", 
      "concentration", 
      "measurements", 
      "better results", 
      "quantity", 
      "simulations", 
      "results", 
      "conditions", 
      "performance", 
      "values", 
      "respect", 
      "field", 
      "model simulations", 
      "meteorological conditions", 
      "rate", 
      "data", 
      "model results", 
      "airplane measurements", 
      "model", 
      "description", 
      "quality", 
      "part", 
      "large-scale models", 
      "campaign", 
      "scale model", 
      "poor quality", 
      "one-way", 
      "nesting", 
      "boundary values", 
      "driving data"
    ], 
    "name": "The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values", 
    "pagination": "287-295", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032479498"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-0932-4_31"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-0932-4_31", 
      "https://app.dimensions.ai/details/publication/pub.1032479498"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_42.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-010-0932-4_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0932-4_31'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-0932-4_31 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N3b6c1bd13f8d4f4781d6c65427cabd0f
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description Using a high resolution meteorology-chemistry transport model, simulations were performed to estimate the sensitivity of the model results to nesting. The model results are compared with airplane measurements made during the TRACT field measuring campaign in September, 1992. For the meteorological part of the model the performance is enhanced using one-way nesting in a larger scale model, if the quality of the large scale driving data is sufficient. The sensitivity of the NOx concentration results with respect to nesting of chemical quantities is rather low due to the poor quality of the forcing data. A correct description of the emission rates and the meteorological conditions may be more important. For ozone, the best results can be achieved with either no nesting or a meteorological and chemical nested model simulation, which is again a result of the poor quality of the forcing data.
7 schema:editor N464508513ad7466fb97da88dd0e6e10e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N527fe60c01cd4efc85d54354834a0936
12 schema:keywords NOx concentrations
13 airplane measurements
14 better results
15 boundary values
16 campaign
17 chemical quantities
18 chemistry transport model
19 concentration
20 conditions
21 correct description
22 data
23 description
24 driving data
25 emission rates
26 field
27 large-scale driving data
28 large-scale models
29 measurements
30 mesoscale chemistry transport model
31 meteorological conditions
32 meteorological part
33 model
34 model results
35 model simulations
36 nesting
37 one-way
38 ozone
39 part
40 performance
41 poor quality
42 quality
43 quantity
44 rate
45 respect
46 results
47 scale model
48 sensitivity
49 simulations
50 transport model
51 values
52 schema:name The Sensitivity of Mesoscale Chemistry Transport Model Results to Boundary Values
53 schema:pagination 287-295
54 schema:productId N859141a55bec48e58937b7f764b36559
55 Nf35e11e159ff401b826a0d16932745ac
56 schema:publisher N71235b0533e0429f88819f23ce80ee15
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032479498
58 https://doi.org/10.1007/978-94-010-0932-4_31
59 schema:sdDatePublished 2022-05-20T07:48
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N3bbbdb756b8e401d9867bf98a8254c8d
62 schema:url https://doi.org/10.1007/978-94-010-0932-4_31
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N1e85a3dfec3043cfa42347e164788cd2 rdf:first N2b33ffc5ee364d4d9a71961389e25d5c
67 rdf:rest Ncbd4de9316c748e091ca65b7a667903c
68 N2b33ffc5ee364d4d9a71961389e25d5c schema:familyName San José
69 schema:givenName Roberto
70 rdf:type schema:Person
71 N3b6c1bd13f8d4f4781d6c65427cabd0f rdf:first sg:person.016576730165.08
72 rdf:rest N3b901f73757f4ac3bf68099ac94b2cd8
73 N3b901f73757f4ac3bf68099ac94b2cd8 rdf:first sg:person.013535206074.60
74 rdf:rest N425e8b1401de459c93b99186da71aa3b
75 N3bbbdb756b8e401d9867bf98a8254c8d schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N425e8b1401de459c93b99186da71aa3b rdf:first sg:person.012560545423.41
78 rdf:rest rdf:nil
79 N464508513ad7466fb97da88dd0e6e10e rdf:first N61a77b243b884579848d5a4e1266f1a3
80 rdf:rest N1e85a3dfec3043cfa42347e164788cd2
81 N47a59c92f41f4fafb186082056699898 rdf:first N4998abd759394a80a4d58e9b057207dd
82 rdf:rest rdf:nil
83 N4998abd759394a80a4d58e9b057207dd schema:familyName Berkowicz
84 schema:givenName Ruwim
85 rdf:type schema:Person
86 N527fe60c01cd4efc85d54354834a0936 schema:isbn 978-94-010-0932-4
87 978-94-010-3796-9
88 schema:name Urban Air Quality: Measurement, Modelling and Management
89 rdf:type schema:Book
90 N61a77b243b884579848d5a4e1266f1a3 schema:familyName Sokhi
91 schema:givenName Ranjeet S.
92 rdf:type schema:Person
93 N71235b0533e0429f88819f23ce80ee15 schema:name Springer Nature
94 rdf:type schema:Organisation
95 N859141a55bec48e58937b7f764b36559 schema:name doi
96 schema:value 10.1007/978-94-010-0932-4_31
97 rdf:type schema:PropertyValue
98 Nafe11343b1154b21a9564f9ceef8dcb3 schema:familyName Moussiopoulos
99 schema:givenName Nicolas
100 rdf:type schema:Person
101 Ncbd4de9316c748e091ca65b7a667903c rdf:first Nafe11343b1154b21a9564f9ceef8dcb3
102 rdf:rest N47a59c92f41f4fafb186082056699898
103 Nf35e11e159ff401b826a0d16932745ac schema:name dimensions_id
104 schema:value pub.1032479498
105 rdf:type schema:PropertyValue
106 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
107 schema:name Chemical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
110 schema:name Theoretical and Computational Chemistry
111 rdf:type schema:DefinedTerm
112 sg:person.012560545423.41 schema:affiliation grid-institutes:grid.9026.d
113 schema:familyName Schlünzen
114 schema:givenName K. H.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41
116 rdf:type schema:Person
117 sg:person.013535206074.60 schema:affiliation grid-institutes:grid.9026.d
118 schema:familyName Müller
119 schema:givenName F.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013535206074.60
121 rdf:type schema:Person
122 sg:person.016576730165.08 schema:affiliation grid-institutes:grid.450268.d
123 schema:familyName Lenz
124 schema:givenName C.-J.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576730165.08
126 rdf:type schema:Person
127 grid-institutes:grid.450268.d schema:alternateName Max-Planck Institute for Meteorology, Bundesstr. 55, 20146, Hamburg, Germany
128 schema:name Max-Planck Institute for Meteorology, Bundesstr. 55, 20146, Hamburg, Germany
129 rdf:type schema:Organization
130 grid-institutes:grid.9026.d schema:alternateName Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany
131 schema:name Meteorological Institute, University of Hamburg, Geomatikum, Bundesstr. 55, 20146, Hamburg, Germany
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...