Geostatistical Analysis of PCB-Contaminated Sediment in a Commercial Dock, Swansea, UK View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

J. Reed , A. Chappell , J. R. French , M. A. Oliver

ABSTRACT

Dredge materials are now regarded as a resource and are being promoted for beneficial uses such as beach, saltmarsh and wetland restoration. Such a variety of end-uses requires more complex risk assessments, particularly with regard to contaminant loadings and their likely fate in sensitive receiving environments. A case study of Polychlorinated biphenyl (PCBs) concentrations in the sediments of a large (1.5 km x 0.5 km) industrialised dock is used to explore sampling issues and their analysis using geostatistics. A nested sampling scheme of 101 sites is used to identify the magnitude and scale of spatial variation of sediment PCBs. Experimental variograms of individual congeners, total PCBs, particle size, total organic carbon and their principal components are computed and modelled. These provide a clear description of the spatial structure of PCBs and some insight into possible processes affecting their distribution. Ordinary kriging is used to estimate PCB concentrations over the dock. Two areas in the dock exhibit elevated PCB concentrations, which might reflect particular point sources of contamination. The results confirm the effectiveness of the sampling for detecting the spatial scale of variation, and the suitability of geostatistical techniques for investigating the processes controlling the spatial distribution of contaminants. Accurate description of the spatial distribution of contaminants can reduce the risk of misclassification of material designated for remediation, disposal or beneficial use. More... »

PAGES

487-497

Book

TITLE

geoENV III — Geostatistics for Environmental Applications

ISBN

978-0-7923-7107-6
978-94-010-0810-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-0810-5_42

DOI

http://dx.doi.org/10.1007/978-94-010-0810-5_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032368194


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Centre for Environment Fisheries & Aquaculture Science, Burnham-on-Crouch, Essex, UK", 
            "Coastal & Estuarine Research Unit, University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reed", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salford", 
          "id": "https://www.grid.ac/institutes/grid.8752.8", 
          "name": [
            "School of Environment and Life Sciences, University of Salford, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chappell", 
        "givenName": "A.", 
        "id": "sg:person.015500022241.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500022241.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Coastal & Estuarine Research Unit, University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "French", 
        "givenName": "J. R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Department of Soil Science, University of Reading, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliver", 
        "givenName": "M. A.", 
        "id": "sg:person.010076772773.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/wr023i003p00496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001694376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0025-326x(97)00198-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002116905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9673(95)00298-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009422285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.5620091001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017069044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.5620091001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017069044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(79)90201-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045962834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(79)90201-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045962834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1986.tb00095.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052777160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1986.tb00095.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052777160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.1996.0598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104113983"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "Dredge materials are now regarded as a resource and are being promoted for beneficial uses such as beach, saltmarsh and wetland restoration. Such a variety of end-uses requires more complex risk assessments, particularly with regard to contaminant loadings and their likely fate in sensitive receiving environments. A case study of Polychlorinated biphenyl (PCBs) concentrations in the sediments of a large (1.5 km x 0.5 km) industrialised dock is used to explore sampling issues and their analysis using geostatistics. A nested sampling scheme of 101 sites is used to identify the magnitude and scale of spatial variation of sediment PCBs. Experimental variograms of individual congeners, total PCBs, particle size, total organic carbon and their principal components are computed and modelled. These provide a clear description of the spatial structure of PCBs and some insight into possible processes affecting their distribution. Ordinary kriging is used to estimate PCB concentrations over the dock. Two areas in the dock exhibit elevated PCB concentrations, which might reflect particular point sources of contamination. The results confirm the effectiveness of the sampling for detecting the spatial scale of variation, and the suitability of geostatistical techniques for investigating the processes controlling the spatial distribution of contaminants. Accurate description of the spatial distribution of contaminants can reduce the risk of misclassification of material designated for remediation, disposal or beneficial use.", 
    "editor": [
      {
        "familyName": "Monestiez", 
        "givenName": "Pascal", 
        "type": "Person"
      }, 
      {
        "familyName": "Allard", 
        "givenName": "Denis", 
        "type": "Person"
      }, 
      {
        "familyName": "Froidevaux", 
        "givenName": "Roland", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-0810-5_42", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-7923-7107-6", 
        "978-94-010-0810-5"
      ], 
      "name": "geoENV III \u2014 Geostatistics for Environmental Applications", 
      "type": "Book"
    }, 
    "name": "Geostatistical Analysis of PCB-Contaminated Sediment in a Commercial Dock, Swansea, UK", 
    "pagination": "487-497", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032368194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-0810-5_42"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9a32acf603bdd46761968dbb11adecc68110ecf8d7649080e87a4b61e2fa3912"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-0810-5_42", 
      "https://app.dimensions.ai/details/publication/pub.1032368194"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-010-0810-5_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0810-5_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0810-5_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0810-5_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0810-5_42'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-0810-5_42 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author Ne40dda52154c426aa6db4c8cf771d552
4 schema:citation https://doi.org/10.1002/etc.5620091001
5 https://doi.org/10.1016/0021-9673(95)00298-2
6 https://doi.org/10.1016/0043-1354(79)90201-x
7 https://doi.org/10.1016/s0025-326x(97)00198-7
8 https://doi.org/10.1029/wr023i003p00496
9 https://doi.org/10.1111/j.1538-4632.1986.tb00095.x
10 https://doi.org/10.2166/wst.1996.0598
11 schema:datePublished 2001
12 schema:datePublishedReg 2001-01-01
13 schema:description Dredge materials are now regarded as a resource and are being promoted for beneficial uses such as beach, saltmarsh and wetland restoration. Such a variety of end-uses requires more complex risk assessments, particularly with regard to contaminant loadings and their likely fate in sensitive receiving environments. A case study of Polychlorinated biphenyl (PCBs) concentrations in the sediments of a large (1.5 km x 0.5 km) industrialised dock is used to explore sampling issues and their analysis using geostatistics. A nested sampling scheme of 101 sites is used to identify the magnitude and scale of spatial variation of sediment PCBs. Experimental variograms of individual congeners, total PCBs, particle size, total organic carbon and their principal components are computed and modelled. These provide a clear description of the spatial structure of PCBs and some insight into possible processes affecting their distribution. Ordinary kriging is used to estimate PCB concentrations over the dock. Two areas in the dock exhibit elevated PCB concentrations, which might reflect particular point sources of contamination. The results confirm the effectiveness of the sampling for detecting the spatial scale of variation, and the suitability of geostatistical techniques for investigating the processes controlling the spatial distribution of contaminants. Accurate description of the spatial distribution of contaminants can reduce the risk of misclassification of material designated for remediation, disposal or beneficial use.
14 schema:editor N5211295a1a7c432d99f2213fbd4b5c0d
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N73b708817a854fbd80bb93e9ca0cae42
19 schema:name Geostatistical Analysis of PCB-Contaminated Sediment in a Commercial Dock, Swansea, UK
20 schema:pagination 487-497
21 schema:productId N8566aaaa09c14c6db4fc114461558c76
22 Nd36740ccf8c24d7c84f674d86a3365cd
23 Nf9a556d8389a4f48a7778b7e83831acd
24 schema:publisher Naa431c1af7cc456ba841ddabf02127b6
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032368194
26 https://doi.org/10.1007/978-94-010-0810-5_42
27 schema:sdDatePublished 2019-04-16T08:47
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nb8cd76128ca047d79f93c64f37bb4577
30 schema:url https://link.springer.com/10.1007%2F978-94-010-0810-5_42
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N25b4da04b9af45a78e7968c0c09dc599 schema:familyName Monestiez
35 schema:givenName Pascal
36 rdf:type schema:Person
37 N446a11dbc31d4ad0a9faf25228cd56e9 schema:familyName Froidevaux
38 schema:givenName Roland
39 rdf:type schema:Person
40 N48b3bb93236449619d75e55b2cb3c165 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
41 schema:familyName French
42 schema:givenName J. R.
43 rdf:type schema:Person
44 N490e4f190a5c40c69a9894eef3dca805 rdf:first N6007ae57216344f2b85b0b0b6074ac6d
45 rdf:rest N9d77bf57dedc484d9a0960244e82cac8
46 N5211295a1a7c432d99f2213fbd4b5c0d rdf:first N25b4da04b9af45a78e7968c0c09dc599
47 rdf:rest N490e4f190a5c40c69a9894eef3dca805
48 N6007ae57216344f2b85b0b0b6074ac6d schema:familyName Allard
49 schema:givenName Denis
50 rdf:type schema:Person
51 N624bd814118640e395a464b3c5fd77e3 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
52 schema:familyName Reed
53 schema:givenName J.
54 rdf:type schema:Person
55 N6a28955fa0fd42dd84b6d7fd47018c2a rdf:first sg:person.015500022241.00
56 rdf:rest N6ed27718178e491aae97c1dcc79ef6c2
57 N6ed27718178e491aae97c1dcc79ef6c2 rdf:first N48b3bb93236449619d75e55b2cb3c165
58 rdf:rest Nce12692c8a2c422880b35f43ba779050
59 N73b708817a854fbd80bb93e9ca0cae42 schema:isbn 978-0-7923-7107-6
60 978-94-010-0810-5
61 schema:name geoENV III — Geostatistics for Environmental Applications
62 rdf:type schema:Book
63 N8566aaaa09c14c6db4fc114461558c76 schema:name doi
64 schema:value 10.1007/978-94-010-0810-5_42
65 rdf:type schema:PropertyValue
66 N9d77bf57dedc484d9a0960244e82cac8 rdf:first N446a11dbc31d4ad0a9faf25228cd56e9
67 rdf:rest rdf:nil
68 Naa431c1af7cc456ba841ddabf02127b6 schema:location Dordrecht
69 schema:name Springer Netherlands
70 rdf:type schema:Organisation
71 Nb8cd76128ca047d79f93c64f37bb4577 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nce12692c8a2c422880b35f43ba779050 rdf:first sg:person.010076772773.20
74 rdf:rest rdf:nil
75 Nd36740ccf8c24d7c84f674d86a3365cd schema:name dimensions_id
76 schema:value pub.1032368194
77 rdf:type schema:PropertyValue
78 Ne40dda52154c426aa6db4c8cf771d552 rdf:first N624bd814118640e395a464b3c5fd77e3
79 rdf:rest N6a28955fa0fd42dd84b6d7fd47018c2a
80 Nf9a556d8389a4f48a7778b7e83831acd schema:name readcube_id
81 schema:value 9a32acf603bdd46761968dbb11adecc68110ecf8d7649080e87a4b61e2fa3912
82 rdf:type schema:PropertyValue
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
87 schema:name Environmental Engineering
88 rdf:type schema:DefinedTerm
89 sg:person.010076772773.20 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
90 schema:familyName Oliver
91 schema:givenName M. A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20
93 rdf:type schema:Person
94 sg:person.015500022241.00 schema:affiliation https://www.grid.ac/institutes/grid.8752.8
95 schema:familyName Chappell
96 schema:givenName A.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500022241.00
98 rdf:type schema:Person
99 https://doi.org/10.1002/etc.5620091001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017069044
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0021-9673(95)00298-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009422285
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0043-1354(79)90201-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045962834
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0025-326x(97)00198-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002116905
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1029/wr023i003p00496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001694376
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1111/j.1538-4632.1986.tb00095.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052777160
110 rdf:type schema:CreativeWork
111 https://doi.org/10.2166/wst.1996.0598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104113983
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
114 schema:name Centre for Environment Fisheries & Aquaculture Science, Burnham-on-Crouch, Essex, UK
115 Coastal & Estuarine Research Unit, University College London, London, UK
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.8752.8 schema:alternateName University of Salford
118 schema:name School of Environment and Life Sciences, University of Salford, Manchester, UK
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
121 schema:name Department of Soil Science, University of Reading, Reading, UK
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...