First-Principles Theoretical Modeling of Nanotube Growth View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Jean-Christophe Charlier , Xavier Blase , Alessandro De Vita , Roberto Car

ABSTRACT

The growth of carbon (C) and boron nitride (BN) nanotubes cannot be directly observed and the underlying microscopic mechanism is a controversial subject. Here we report on the results of first-principles dynamical simulations of both single-and double-walled carbon nanotube edges. We find that the open end of carbon single-walled nanotubes (SWNTs) spontaneously closes by forming a graphitic dome in the 2500-3000 K temperature range of synthesis experiments. On the other hand, “lip-lip” interactions, consisting of chemical bonding between the edges of adjacent coaxial tubes, trap the end of the double-walled carbon nanotube into a metastable energy minimum, preventing dome closure. The resulting end geometry is highly chemically active, and can easily accommodate incoming carbon fragments, thus allowing for growth by chemisorption from the vapour phase. Electron microscopy observations and electron diffraction patterns reveal that B doping considerably increases the length of carbon tubes and leads to a remarkable preferred “zigzag” chirality. These findings are corroborated by first-principles static calculations and dynamical simulations which indicate that, in the “zigzag” geometry, B atoms act as surfactant during growth preventing tube closure. This mechanism does not extend to “armchair” tubes suggesting a helicity selection during growth. The growth mechanisms of boron nitride SWNTs are studied as well and compared to the case of pure carbon tubes. In the experimental conditions of temperature, the behavior of growing BN nanotubes strongly depends on the nanotube network helicity. In particular, we find that open-ended “zigzag” tubes close rapidly into an amorphous like tip, preventing further growth. In the case of “armchair” tubes, the formation of squares traps the tip into a flat cap presenting a large central even-member ring. This structure is metastable and able to revert to a growing hexagonal framework by incorporation of incoming atoms. These findings are directly related to frustration effects, namely that B-N bonds are energetically favored over B-B and N-N bonds. More... »

PAGES

149-170

Book

TITLE

Carbon Filaments and Nanotubes: Common Origins, Differing Applications?

ISBN

978-0-7923-6908-0
978-94-010-0777-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-0777-1_10

DOI

http://dx.doi.org/10.1007/978-94-010-0777-1_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034379665


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Catholique de Louvain", 
          "id": "https://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Unit\u00e9 de Physico-Chimie et de Physique des Mat\u00e9riaux, Universit\u00e9 Catholique de Louvain, Place Croix du SUd 1, B-1348, Louvain-la-Neuve, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charlier", 
        "givenName": "Jean-Christophe", 
        "id": "sg:person.01355100416.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355100416.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Claude Bernard University Lyon 1", 
          "id": "https://www.grid.ac/institutes/grid.7849.2", 
          "name": [
            "D\u00e9partement de Physique des Mat\u00e9riaux, U.M.R. n\u00ba 5586, Universit\u00e9 Claude Bernard, 43 bd. du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blase", 
        "givenName": "Xavier", 
        "id": "sg:person.0644161027.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644161027.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trieste", 
          "id": "https://www.grid.ac/institutes/grid.5133.4", 
          "name": [
            "Istituto Nazionale di Fisica della Materia (INFM) and Department of Material Engineering and Applied Chemistry, University of Trieste, via Valerio 2, I-34149, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Vita", 
        "givenName": "Alessandro", 
        "id": "sg:person.01302545505.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302545505.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemistry, Princeton University, 107HB Hoyt Lab, 08544, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Car", 
        "givenName": "Roberto", 
        "id": "sg:person.0664065627.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664065627.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/363603a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003373531", 
          "https://doi.org/10.1038/363603a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386474a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007355361", 
          "https://doi.org/10.1038/386474a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/356776a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009023835", 
          "https://doi.org/10.1038/356776a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/354056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016485857", 
          "https://doi.org/10.1038/354056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/358220a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024485352", 
          "https://doi.org/10.1038/358220a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.4023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025362433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.4023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025362433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/363605a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027221895", 
          "https://doi.org/10.1038/363605a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(93)90009-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030091592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/381678a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036830729", 
          "https://doi.org/10.1038/381678a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(92)85559-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039940305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(93)90522-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043099093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(93)90522-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043099093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(93)85039-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043316174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5107(93)90184-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044798516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5107(93)90184-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044798516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(96)00773-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045489762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047629025", 
          "https://doi.org/10.1038/29954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047629025", 
          "https://doi.org/10.1038/29954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100027a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055649874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100196a017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055658448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.118354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057682551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1753975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057814420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.447334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058025354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058127103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.31.1695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.31.1695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.4199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.4199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.1993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.6868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060576556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.6868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060576556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.2083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.2083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.2471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.2471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.2332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.2332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.269.5226.966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062550685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5239.1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.272.5258.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5300.647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062555650"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "The growth of carbon (C) and boron nitride (BN) nanotubes cannot be directly observed and the underlying microscopic mechanism is a controversial subject. Here we report on the results of first-principles dynamical simulations of both single-and double-walled carbon nanotube edges. We find that the open end of carbon single-walled nanotubes (SWNTs) spontaneously closes by forming a graphitic dome in the 2500-3000 K temperature range of synthesis experiments. On the other hand, \u201clip-lip\u201d interactions, consisting of chemical bonding between the edges of adjacent coaxial tubes, trap the end of the double-walled carbon nanotube into a metastable energy minimum, preventing dome closure. The resulting end geometry is highly chemically active, and can easily accommodate incoming carbon fragments, thus allowing for growth by chemisorption from the vapour phase. Electron microscopy observations and electron diffraction patterns reveal that B doping considerably increases the length of carbon tubes and leads to a remarkable preferred \u201czigzag\u201d chirality. These findings are corroborated by first-principles static calculations and dynamical simulations which indicate that, in the \u201czigzag\u201d geometry, B atoms act as surfactant during growth preventing tube closure. This mechanism does not extend to \u201carmchair\u201d tubes suggesting a helicity selection during growth. The growth mechanisms of boron nitride SWNTs are studied as well and compared to the case of pure carbon tubes. In the experimental conditions of temperature, the behavior of growing BN nanotubes strongly depends on the nanotube network helicity. In particular, we find that open-ended \u201czigzag\u201d tubes close rapidly into an amorphous like tip, preventing further growth. In the case of \u201carmchair\u201d tubes, the formation of squares traps the tip into a flat cap presenting a large central even-member ring. This structure is metastable and able to revert to a growing hexagonal framework by incorporation of incoming atoms. These findings are directly related to frustration effects, namely that B-N bonds are energetically favored over B-B and N-N bonds.", 
    "editor": [
      {
        "familyName": "Bir\u00f3", 
        "givenName": "L. P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Bernardo", 
        "givenName": "C. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tibbetts", 
        "givenName": "G. G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Lambin", 
        "givenName": "Ph.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-0777-1_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-7923-6908-0", 
        "978-94-010-0777-1"
      ], 
      "name": "Carbon Filaments and Nanotubes: Common Origins, Differing Applications?", 
      "type": "Book"
    }, 
    "name": "First-Principles Theoretical Modeling of Nanotube Growth", 
    "pagination": "149-170", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034379665"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-0777-1_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a3c5702323aaa4707eece21107f4d4b3ad803044bab4a640235fedcd77bd8026"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-0777-1_10", 
      "https://app.dimensions.ai/details/publication/pub.1034379665"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88242_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-010-0777-1_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0777-1_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0777-1_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0777-1_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0777-1_10'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      23 PREDICATES      64 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-0777-1_10 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ncac3c871c127402ca3ea05911b79c945
4 schema:citation sg:pub.10.1038/29954
5 sg:pub.10.1038/354056a0
6 sg:pub.10.1038/356776a0
7 sg:pub.10.1038/358220a0
8 sg:pub.10.1038/363603a0
9 sg:pub.10.1038/363605a0
10 sg:pub.10.1038/381678a0
11 sg:pub.10.1038/386474a0
12 https://doi.org/10.1016/0009-2614(92)85559-s
13 https://doi.org/10.1016/0009-2614(93)85039-q
14 https://doi.org/10.1016/0009-2614(93)90009-p
15 https://doi.org/10.1016/0009-2614(96)00773-7
16 https://doi.org/10.1016/0022-0248(93)90522-x
17 https://doi.org/10.1016/0921-5107(93)90184-o
18 https://doi.org/10.1021/j100027a002
19 https://doi.org/10.1021/j100196a017
20 https://doi.org/10.1063/1.118354
21 https://doi.org/10.1063/1.1753975
22 https://doi.org/10.1063/1.447334
23 https://doi.org/10.1063/1.881603
24 https://doi.org/10.1103/physreva.31.1695
25 https://doi.org/10.1103/physrevb.26.4199
26 https://doi.org/10.1103/physrevb.43.1993
27 https://doi.org/10.1103/physrevb.51.6868
28 https://doi.org/10.1103/physrevb.52.2083
29 https://doi.org/10.1103/physrevb.53.4023
30 https://doi.org/10.1103/physrevlett.55.2471
31 https://doi.org/10.1103/physrevlett.69.3100
32 https://doi.org/10.1103/physrevlett.76.2515
33 https://doi.org/10.1103/physrevlett.76.4737
34 https://doi.org/10.1103/physrevlett.80.1666
35 https://doi.org/10.1103/physrevlett.81.2332
36 https://doi.org/10.1103/physrevlett.83.5078
37 https://doi.org/10.1126/science.269.5226.966
38 https://doi.org/10.1126/science.270.5239.1179
39 https://doi.org/10.1126/science.272.5258.87
40 https://doi.org/10.1126/science.275.5300.647
41 schema:datePublished 2001
42 schema:datePublishedReg 2001-01-01
43 schema:description The growth of carbon (C) and boron nitride (BN) nanotubes cannot be directly observed and the underlying microscopic mechanism is a controversial subject. Here we report on the results of first-principles dynamical simulations of both single-and double-walled carbon nanotube edges. We find that the open end of carbon single-walled nanotubes (SWNTs) spontaneously closes by forming a graphitic dome in the 2500-3000 K temperature range of synthesis experiments. On the other hand, “lip-lip” interactions, consisting of chemical bonding between the edges of adjacent coaxial tubes, trap the end of the double-walled carbon nanotube into a metastable energy minimum, preventing dome closure. The resulting end geometry is highly chemically active, and can easily accommodate incoming carbon fragments, thus allowing for growth by chemisorption from the vapour phase. Electron microscopy observations and electron diffraction patterns reveal that B doping considerably increases the length of carbon tubes and leads to a remarkable preferred “zigzag” chirality. These findings are corroborated by first-principles static calculations and dynamical simulations which indicate that, in the “zigzag” geometry, B atoms act as surfactant during growth preventing tube closure. This mechanism does not extend to “armchair” tubes suggesting a helicity selection during growth. The growth mechanisms of boron nitride SWNTs are studied as well and compared to the case of pure carbon tubes. In the experimental conditions of temperature, the behavior of growing BN nanotubes strongly depends on the nanotube network helicity. In particular, we find that open-ended “zigzag” tubes close rapidly into an amorphous like tip, preventing further growth. In the case of “armchair” tubes, the formation of squares traps the tip into a flat cap presenting a large central even-member ring. This structure is metastable and able to revert to a growing hexagonal framework by incorporation of incoming atoms. These findings are directly related to frustration effects, namely that B-N bonds are energetically favored over B-B and N-N bonds.
44 schema:editor N95943b8f2e5d46a3a973c99903f75293
45 schema:genre chapter
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N0fd988657b2c4224b4055f20ccab2b45
49 schema:name First-Principles Theoretical Modeling of Nanotube Growth
50 schema:pagination 149-170
51 schema:productId N2f8aa94c6219454c8855df4292a1b849
52 N8271c1d85f884c1c9d85079734f5b4fe
53 Nc902890c3fa24fa2be9508bfd5fc69af
54 schema:publisher N9b5895bbeaf5454698aee8230c4e93fd
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034379665
56 https://doi.org/10.1007/978-94-010-0777-1_10
57 schema:sdDatePublished 2019-04-16T08:47
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nb32e60f5de0d47d7ba226a418c8ffed0
60 schema:url https://link.springer.com/10.1007%2F978-94-010-0777-1_10
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N03420f45a07c47bcb8161b878654676e rdf:first sg:person.0664065627.24
65 rdf:rest rdf:nil
66 N047b8826e77c4180b77e15fd1e26d873 rdf:first sg:person.0644161027.01
67 rdf:rest N49ea276bd168479b8c70ae19402f88de
68 N0fd988657b2c4224b4055f20ccab2b45 schema:isbn 978-0-7923-6908-0
69 978-94-010-0777-1
70 schema:name Carbon Filaments and Nanotubes: Common Origins, Differing Applications?
71 rdf:type schema:Book
72 N1c2cabea99e24d41b852c0f964f20e29 schema:familyName Biró
73 schema:givenName L. P.
74 rdf:type schema:Person
75 N228eea5c30cf489ba72202bd300e085a schema:familyName Lambin
76 schema:givenName Ph.
77 rdf:type schema:Person
78 N2f8aa94c6219454c8855df4292a1b849 schema:name doi
79 schema:value 10.1007/978-94-010-0777-1_10
80 rdf:type schema:PropertyValue
81 N41bc3c8e4b7e4ca3b18923b833525435 rdf:first N5131aeb2be8c4d78a928bd217ec1d26d
82 rdf:rest N9c9060b523764f5f8cd7a7ce2c50f184
83 N49ea276bd168479b8c70ae19402f88de rdf:first sg:person.01302545505.37
84 rdf:rest N03420f45a07c47bcb8161b878654676e
85 N5131aeb2be8c4d78a928bd217ec1d26d schema:familyName Bernardo
86 schema:givenName C. A.
87 rdf:type schema:Person
88 N6e38cda1a8c54ba4a36e82e46c8e63ec rdf:first N228eea5c30cf489ba72202bd300e085a
89 rdf:rest rdf:nil
90 N8271c1d85f884c1c9d85079734f5b4fe schema:name dimensions_id
91 schema:value pub.1034379665
92 rdf:type schema:PropertyValue
93 N95943b8f2e5d46a3a973c99903f75293 rdf:first N1c2cabea99e24d41b852c0f964f20e29
94 rdf:rest N41bc3c8e4b7e4ca3b18923b833525435
95 N9b5895bbeaf5454698aee8230c4e93fd schema:location Dordrecht
96 schema:name Springer Netherlands
97 rdf:type schema:Organisation
98 N9c9060b523764f5f8cd7a7ce2c50f184 rdf:first Nc3aa500143354e589052715c0dcd4730
99 rdf:rest N6e38cda1a8c54ba4a36e82e46c8e63ec
100 Nb32e60f5de0d47d7ba226a418c8ffed0 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nc3aa500143354e589052715c0dcd4730 schema:familyName Tibbetts
103 schema:givenName G. G.
104 rdf:type schema:Person
105 Nc902890c3fa24fa2be9508bfd5fc69af schema:name readcube_id
106 schema:value a3c5702323aaa4707eece21107f4d4b3ad803044bab4a640235fedcd77bd8026
107 rdf:type schema:PropertyValue
108 Ncac3c871c127402ca3ea05911b79c945 rdf:first sg:person.01355100416.87
109 rdf:rest N047b8826e77c4180b77e15fd1e26d873
110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
114 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
115 rdf:type schema:DefinedTerm
116 sg:person.01302545505.37 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
117 schema:familyName De Vita
118 schema:givenName Alessandro
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302545505.37
120 rdf:type schema:Person
121 sg:person.01355100416.87 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
122 schema:familyName Charlier
123 schema:givenName Jean-Christophe
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355100416.87
125 rdf:type schema:Person
126 sg:person.0644161027.01 schema:affiliation https://www.grid.ac/institutes/grid.7849.2
127 schema:familyName Blase
128 schema:givenName Xavier
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644161027.01
130 rdf:type schema:Person
131 sg:person.0664065627.24 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
132 schema:familyName Car
133 schema:givenName Roberto
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664065627.24
135 rdf:type schema:Person
136 sg:pub.10.1038/29954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047629025
137 https://doi.org/10.1038/29954
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/354056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485857
140 https://doi.org/10.1038/354056a0
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/356776a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009023835
143 https://doi.org/10.1038/356776a0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/358220a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024485352
146 https://doi.org/10.1038/358220a0
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/363603a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003373531
149 https://doi.org/10.1038/363603a0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/363605a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027221895
152 https://doi.org/10.1038/363605a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/381678a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036830729
155 https://doi.org/10.1038/381678a0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/386474a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007355361
158 https://doi.org/10.1038/386474a0
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0009-2614(92)85559-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1039940305
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0009-2614(93)85039-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1043316174
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/0009-2614(93)90009-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1030091592
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0009-2614(96)00773-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045489762
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0022-0248(93)90522-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043099093
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0921-5107(93)90184-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1044798516
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/j100027a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055649874
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/j100196a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055658448
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.118354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057682551
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.1753975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057814420
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.447334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058025354
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.881603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127103
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physreva.31.1695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473124
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.26.4199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531441
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.43.1993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557212
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.51.6868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060576556
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.52.2083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060577976
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.53.4023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025362433
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.55.2471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792403
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.69.3100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805707
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.76.2515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812875
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.76.4737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813390
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.80.1666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816945
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.81.2332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818094
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.83.5078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820494
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.269.5226.966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062550685
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.270.5239.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551638
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.272.5258.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552677
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.275.5300.647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555650
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
219 schema:name Department of Chemistry, Princeton University, 107HB Hoyt Lab, 08544, Princeton, NJ, USA
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
222 schema:name Istituto Nazionale di Fisica della Materia (INFM) and Department of Material Engineering and Applied Chemistry, University of Trieste, via Valerio 2, I-34149, Trieste, Italy
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.7849.2 schema:alternateName Claude Bernard University Lyon 1
225 schema:name Département de Physique des Matériaux, U.M.R. nº 5586, Université Claude Bernard, 43 bd. du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.7942.8 schema:alternateName Université Catholique de Louvain
228 schema:name Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, Place Croix du SUd 1, B-1348, Louvain-la-Neuve, Belgium
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...