Study of Decoherence Time of Electronic States in Quantum Dots, Josephson Junctions and Fractional Quantum Hall Effect “Pseudo-Spin” Quantum Computing ... View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Masanori Sugahara , Sergei Kruchinin , Nikolai Bogolubov

ABSTRACT

Recently quantum computing has attracted wide attention [1]. It was shown that any quantum computer can be composed based on the combination of “controlled NOT gates” [2,3], where the quantum state is processed using a control bit and target bit. In order that a gate acquires practical feasibility, the decoherence time τd ≡ 1/γ of the quantum state has to be long enough for quantum-computing operations. For example, it has been estimated that the “resolution of the number N into factors” needs large numbers of computing processes of the order of ∼exp[γ(logN)2] [4], or to take substantial computation time as long as ∼40min for 2048 bits of N. [5] These estimations reveal that a quantum computer with enough reliability and superiority in comparison with traditional computer is feasible either at (i) “effectively zero temperature” in the hitherto-proposed gate systems or in a new system having the practical immunity from phonon disturbance. The authors (M.S and S.K) proposed [6] that we can make a controlled NOT gate with very long τd by the use of the pseudo-spin states in a two layer FQHE system. More... »

PAGES

415-428

Book

TITLE

New Trends in Superconductivity

ISBN

978-1-4020-0705-7
978-94-010-0544-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_37

DOI

http://dx.doi.org/10.1007/978-94-010-0544-9_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052133160


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yokohama National University", 
          "id": "https://www.grid.ac/institutes/grid.268446.a", 
          "name": [
            "Graduate School of Engineering, Yokohama National University, 240-8501, Hodogaya, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugahara", 
        "givenName": "Masanori", 
        "id": "sg:person.015163375323.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015163375323.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bogolyubov Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.418413.b", 
          "name": [
            "Bogolyubov Institute for Theoretical Physics, Metrologichna str. 14-b, 252143, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kruchinin", 
        "givenName": "Sergei", 
        "id": "sg:person.010214613305.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214613305.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Academy of Science of Russia, V.A. Steklov Mathematical Institute, GSP-1, Gubkin str. 8, 117966, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogolubov", 
        "givenName": "Nikolai", 
        "id": "sg:person.014002145246.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014002145246.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rspa.1995.0065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008818220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.3457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036486855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.3457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036486855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058126781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.25.2185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060530222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.25.2185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060530222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.11.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.11.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.39.4642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063064044"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "Recently quantum computing has attracted wide attention [1]. It was shown that any quantum computer can be composed based on the combination of \u201ccontrolled NOT gates\u201d [2,3], where the quantum state is processed using a control bit and target bit. In order that a gate acquires practical feasibility, the decoherence time \u03c4d \u2261 1/\u03b3 of the quantum state has to be long enough for quantum-computing operations. For example, it has been estimated that the \u201cresolution of the number N into factors\u201d needs large numbers of computing processes of the order of \u223cexp[\u03b3(logN)2] [4], or to take substantial computation time as long as \u223c40min for 2048 bits of N. [5] These estimations reveal that a quantum computer with enough reliability and superiority in comparison with traditional computer is feasible either at (i) \u201ceffectively zero temperature\u201d in the hitherto-proposed gate systems or in a new system having the practical immunity from phonon disturbance. The authors (M.S and S.K) proposed [6] that we can make a controlled NOT gate with very long \u03c4d by the use of the pseudo-spin states in a two layer FQHE system.", 
    "editor": [
      {
        "familyName": "Annett", 
        "givenName": "James F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kruchinin", 
        "givenName": "Sergei", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-0544-9_37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-0705-7", 
        "978-94-010-0544-9"
      ], 
      "name": "New Trends in Superconductivity", 
      "type": "Book"
    }, 
    "name": "Study of Decoherence Time of Electronic States in Quantum Dots, Josephson Junctions and Fractional Quantum Hall Effect \u201cPseudo-Spin\u201d Quantum Computing Devices", 
    "pagination": "415-428", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052133160"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-0544-9_37"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f853fa9063bb9b312266436a3c68f090079006de46848b82f8f2545f2c83dc9a"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-0544-9_37", 
      "https://app.dimensions.ai/details/publication/pub.1052133160"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106813_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-010-0544-9_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_37'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-0544-9_37 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N4849a72e86634b50a55f44a26a5d82f0
4 schema:citation https://doi.org/10.1063/1.881293
5 https://doi.org/10.1098/rspa.1995.0065
6 https://doi.org/10.1103/physreva.52.3457
7 https://doi.org/10.1103/physrevb.25.2185
8 https://doi.org/10.1103/physrevlett.11.104
9 https://doi.org/10.1103/physrevlett.50.1395
10 https://doi.org/10.1143/jjap.39.4642
11 schema:datePublished 2002
12 schema:datePublishedReg 2002-01-01
13 schema:description Recently quantum computing has attracted wide attention [1]. It was shown that any quantum computer can be composed based on the combination of “controlled NOT gates” [2,3], where the quantum state is processed using a control bit and target bit. In order that a gate acquires practical feasibility, the decoherence time τd ≡ 1/γ of the quantum state has to be long enough for quantum-computing operations. For example, it has been estimated that the “resolution of the number N into factors” needs large numbers of computing processes of the order of ∼exp[γ(logN)2] [4], or to take substantial computation time as long as ∼40min for 2048 bits of N. [5] These estimations reveal that a quantum computer with enough reliability and superiority in comparison with traditional computer is feasible either at (i) “effectively zero temperature” in the hitherto-proposed gate systems or in a new system having the practical immunity from phonon disturbance. The authors (M.S and S.K) proposed [6] that we can make a controlled NOT gate with very long τd by the use of the pseudo-spin states in a two layer FQHE system.
14 schema:editor N157a9119aaba462ba5ace71cef11ec1d
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Na3ed9724023441fdbe9c2d380931619e
19 schema:name Study of Decoherence Time of Electronic States in Quantum Dots, Josephson Junctions and Fractional Quantum Hall Effect “Pseudo-Spin” Quantum Computing Devices
20 schema:pagination 415-428
21 schema:productId N3b1079678b6045008d90e01ac28a3132
22 N5b76415658e741a7a892766040bba63a
23 Nf7cb1e348b95495fa610d49895a18b53
24 schema:publisher N21cb1612f61045c68db2dd2039d986da
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052133160
26 https://doi.org/10.1007/978-94-010-0544-9_37
27 schema:sdDatePublished 2019-04-16T10:08
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N10a7ffc840a348ee891c724a15f73ad1
30 schema:url https://link.springer.com/10.1007%2F978-94-010-0544-9_37
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N10a7ffc840a348ee891c724a15f73ad1 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N157a9119aaba462ba5ace71cef11ec1d rdf:first N46ac7d0cd1234b0580341686dfc438f5
37 rdf:rest N59f37aa785994c4597be14480ce0623d
38 N177926585f1f4a49a35649b25aa3e751 rdf:first sg:person.014002145246.63
39 rdf:rest rdf:nil
40 N21cb1612f61045c68db2dd2039d986da schema:location Dordrecht
41 schema:name Springer Netherlands
42 rdf:type schema:Organisation
43 N3b1079678b6045008d90e01ac28a3132 schema:name doi
44 schema:value 10.1007/978-94-010-0544-9_37
45 rdf:type schema:PropertyValue
46 N46ac7d0cd1234b0580341686dfc438f5 schema:familyName Annett
47 schema:givenName James F.
48 rdf:type schema:Person
49 N47de5121c7c04907ac12bc29314895d4 rdf:first sg:person.010214613305.37
50 rdf:rest N177926585f1f4a49a35649b25aa3e751
51 N4849a72e86634b50a55f44a26a5d82f0 rdf:first sg:person.015163375323.63
52 rdf:rest N47de5121c7c04907ac12bc29314895d4
53 N59f37aa785994c4597be14480ce0623d rdf:first Ne63070e6ddc34e359150a52bbf60ca71
54 rdf:rest rdf:nil
55 N5b76415658e741a7a892766040bba63a schema:name dimensions_id
56 schema:value pub.1052133160
57 rdf:type schema:PropertyValue
58 Na3ed9724023441fdbe9c2d380931619e schema:isbn 978-1-4020-0705-7
59 978-94-010-0544-9
60 schema:name New Trends in Superconductivity
61 rdf:type schema:Book
62 Ne63070e6ddc34e359150a52bbf60ca71 schema:familyName Kruchinin
63 schema:givenName Sergei
64 rdf:type schema:Person
65 Nf7cb1e348b95495fa610d49895a18b53 schema:name readcube_id
66 schema:value f853fa9063bb9b312266436a3c68f090079006de46848b82f8f2545f2c83dc9a
67 rdf:type schema:PropertyValue
68 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
72 schema:name Quantum Physics
73 rdf:type schema:DefinedTerm
74 sg:person.010214613305.37 schema:affiliation https://www.grid.ac/institutes/grid.418413.b
75 schema:familyName Kruchinin
76 schema:givenName Sergei
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214613305.37
78 rdf:type schema:Person
79 sg:person.014002145246.63 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
80 schema:familyName Bogolubov
81 schema:givenName Nikolai
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014002145246.63
83 rdf:type schema:Person
84 sg:person.015163375323.63 schema:affiliation https://www.grid.ac/institutes/grid.268446.a
85 schema:familyName Sugahara
86 schema:givenName Masanori
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015163375323.63
88 rdf:type schema:Person
89 https://doi.org/10.1063/1.881293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058126781
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1098/rspa.1995.0065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008818220
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physreva.52.3457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036486855
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevb.25.2185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530222
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevlett.11.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760782
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevlett.50.1395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788446
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1143/jjap.39.4642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063064044
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.268446.a schema:alternateName Yokohama National University
104 schema:name Graduate School of Engineering, Yokohama National University, 240-8501, Hodogaya, Yokohama, Japan
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.418413.b schema:alternateName Bogolyubov Institute for Theoretical Physics
107 schema:name Bogolyubov Institute for Theoretical Physics, Metrologichna str. 14-b, 252143, Kiev, Ukraine
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
110 schema:name Academy of Science of Russia, V.A. Steklov Mathematical Institute, GSP-1, Gubkin str. 8, 117966, Moscow, Russia
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...