The Hydrodynamic Instability in the Vortex-Anti-Vortex System View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

L. M. Fisher , P. E. Goa , M. Baziljevich , T. H. Johansen , A. L. Rakhmanov , V. A. Yampol’skii

ABSTRACT

The interest in the physics of the vortex state in type-II superconductors increased significantly after the discovery of high-Tc superconductivity (HTS). A main reason for the renewed attention is the observation of many novel nontrivial phenomena occurring in the vortex matter of the HTS materials. The perhaps most dramatic of these phenomena is the turbulence instability of the vortex-antivortex interface, which was observed in 1-2-3 systems using magneto-optical (MO) imaging [1, 2, 3]. It consists in the following. When magnetic flux is trapped in the superconductor and a moderate field of reverse direction is subsequently applied, a boundary of zero flux density will separate regions containing flux and antiflux. In some temperature and field range this stable flux-antiflux distribution can display unstable behavior characterized by an irregular time-dependent propagation of the boundary where finger-like patterns develop. This contrasts strongly the stationary and reproducible propagation of the flux front during virgin field penetration, when only one flux polarity is present in the sample. It More... »

PAGES

385-393

Book

TITLE

New Trends in Superconductivity

ISBN

978-1-4020-0705-7
978-94-010-0544-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_34

DOI

http://dx.doi.org/10.1007/978-94-010-0544-9_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036853626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "All-Russian Electrical Engineering Institute, 12 Krasnokazar-mennaya Street, 111250, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fisher", 
        "givenName": "L. M.", 
        "id": "sg:person.015770322107.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770322107.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo 3, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goa", 
        "givenName": "P. E.", 
        "id": "sg:person.0744371263.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744371263.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo 3, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baziljevich", 
        "givenName": "M.", 
        "id": "sg:person.01010032723.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010032723.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo 3, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johansen", 
        "givenName": "T. H.", 
        "id": "sg:person.01041136063.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041136063.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical and Applied Electrodynamics", 
          "id": "https://www.grid.ac/institutes/grid.473298.3", 
          "name": [
            "Institute for Theoretical and Applied Electrodynamics Russian Academy of Science, 13/19 Izhorskaya Street, 127412, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rakhmanov", 
        "givenName": "A. L.", 
        "id": "sg:person.0625750307.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625750307.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Radiophysics and Electronics Ukrainian Academy of Science, 12 Proskura Street, 61085, Kharkov, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yampol\u2019skii", 
        "givenName": "V. A.", 
        "id": "sg:person.0637164323.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637164323.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0921-4534(94)90554-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000487320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(94)90554-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000487320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(93)90919-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023143539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(93)90919-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023143539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(99)02058-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047187841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.3638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.3638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.5622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.5622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060588181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060588181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.2878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.2878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.r6639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.r6639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.3197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.3197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.8.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.8.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.68.911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.68.911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979295000422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062941287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1998-00167-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064235061"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "The interest in the physics of the vortex state in type-II superconductors increased significantly after the discovery of high-Tc superconductivity (HTS). A main reason for the renewed attention is the observation of many novel nontrivial phenomena occurring in the vortex matter of the HTS materials. The perhaps most dramatic of these phenomena is the turbulence instability of the vortex-antivortex interface, which was observed in 1-2-3 systems using magneto-optical (MO) imaging [1, 2, 3]. It consists in the following. When magnetic flux is trapped in the superconductor and a moderate field of reverse direction is subsequently applied, a boundary of zero flux density will separate regions containing flux and antiflux. In some temperature and field range this stable flux-antiflux distribution can display unstable behavior characterized by an irregular time-dependent propagation of the boundary where finger-like patterns develop. This contrasts strongly the stationary and reproducible propagation of the flux front during virgin field penetration, when only one flux polarity is present in the sample. It", 
    "editor": [
      {
        "familyName": "Annett", 
        "givenName": "James F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kruchinin", 
        "givenName": "Sergei", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-0544-9_34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-0705-7", 
        "978-94-010-0544-9"
      ], 
      "name": "New Trends in Superconductivity", 
      "type": "Book"
    }, 
    "name": "The Hydrodynamic Instability in the Vortex-Anti-Vortex System", 
    "pagination": "385-393", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036853626"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-0544-9_34"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "af8e97873a1ed3414d27f022bc9d3d008ebc84af76bf947c372c17acedbd138b"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-0544-9_34", 
      "https://app.dimensions.ai/details/publication/pub.1036853626"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106810_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-010-0544-9_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0544-9_34'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-0544-9_34 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N887932d22d4641bc97d25a8713e86c13
4 schema:citation https://doi.org/10.1016/0921-4534(93)90919-h
5 https://doi.org/10.1016/0921-4534(94)90554-1
6 https://doi.org/10.1016/s0921-4526(99)02058-x
7 https://doi.org/10.1103/physrevb.46.3638
8 https://doi.org/10.1103/physrevb.56.5622
9 https://doi.org/10.1103/physrevb.57.575
10 https://doi.org/10.1103/physrevb.58.2878
11 https://doi.org/10.1103/physrevb.59.r6639
12 https://doi.org/10.1103/physrevlett.65.3197
13 https://doi.org/10.1103/physrevlett.76.4030
14 https://doi.org/10.1103/physrevlett.8.250
15 https://doi.org/10.1103/revmodphys.68.911
16 https://doi.org/10.1142/s0217979295000422
17 https://doi.org/10.1209/epl/i1998-00167-2
18 schema:datePublished 2002
19 schema:datePublishedReg 2002-01-01
20 schema:description The interest in the physics of the vortex state in type-II superconductors increased significantly after the discovery of high-Tc superconductivity (HTS). A main reason for the renewed attention is the observation of many novel nontrivial phenomena occurring in the vortex matter of the HTS materials. The perhaps most dramatic of these phenomena is the turbulence instability of the vortex-antivortex interface, which was observed in 1-2-3 systems using magneto-optical (MO) imaging [1, 2, 3]. It consists in the following. When magnetic flux is trapped in the superconductor and a moderate field of reverse direction is subsequently applied, a boundary of zero flux density will separate regions containing flux and antiflux. In some temperature and field range this stable flux-antiflux distribution can display unstable behavior characterized by an irregular time-dependent propagation of the boundary where finger-like patterns develop. This contrasts strongly the stationary and reproducible propagation of the flux front during virgin field penetration, when only one flux polarity is present in the sample. It
21 schema:editor N02c5b99c1b624217831435c418c6b8e6
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N1b02ee71f30c46da8ef8ebf8bed43cec
26 schema:name The Hydrodynamic Instability in the Vortex-Anti-Vortex System
27 schema:pagination 385-393
28 schema:productId N3277b2242ff6418baba80c5b7cea92d0
29 N45fd5c9a65ea4baf836167200fc4c667
30 N6831b787ae75442da4dd3bf0d91018a2
31 schema:publisher Nea3688ba1e244f6980b6991b173996fd
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036853626
33 https://doi.org/10.1007/978-94-010-0544-9_34
34 schema:sdDatePublished 2019-04-16T10:07
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nf47e321a877b4555a24009a4de39fc48
37 schema:url https://link.springer.com/10.1007%2F978-94-010-0544-9_34
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N02c5b99c1b624217831435c418c6b8e6 rdf:first Neb877547069146d9a0b5fd88a15efd2c
42 rdf:rest N1164da3475e4452689217317abe197f8
43 N0733eb4058e047ed83f1becc0d97c4c6 rdf:first sg:person.01041136063.62
44 rdf:rest Na0bf100fb0f240f9b8194ed31b735dd8
45 N1164da3475e4452689217317abe197f8 rdf:first N20166c19b4ba463aa0248d1f5977041b
46 rdf:rest rdf:nil
47 N1b02ee71f30c46da8ef8ebf8bed43cec schema:isbn 978-1-4020-0705-7
48 978-94-010-0544-9
49 schema:name New Trends in Superconductivity
50 rdf:type schema:Book
51 N20166c19b4ba463aa0248d1f5977041b schema:familyName Kruchinin
52 schema:givenName Sergei
53 rdf:type schema:Person
54 N3277b2242ff6418baba80c5b7cea92d0 schema:name readcube_id
55 schema:value af8e97873a1ed3414d27f022bc9d3d008ebc84af76bf947c372c17acedbd138b
56 rdf:type schema:PropertyValue
57 N4181154ac60f459fbcdd8261ed811ab7 schema:name Institute for Radiophysics and Electronics Ukrainian Academy of Science, 12 Proskura Street, 61085, Kharkov, Ukraine
58 rdf:type schema:Organization
59 N45fd5c9a65ea4baf836167200fc4c667 schema:name dimensions_id
60 schema:value pub.1036853626
61 rdf:type schema:PropertyValue
62 N517febb53e6c4bdbae175d9877101f4a rdf:first sg:person.0744371263.45
63 rdf:rest Ndc880f0563154c4796f3814f600f6bc1
64 N5765256a22204f228e7fc63129f8552b schema:name Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo 3, Norway
65 rdf:type schema:Organization
66 N6831b787ae75442da4dd3bf0d91018a2 schema:name doi
67 schema:value 10.1007/978-94-010-0544-9_34
68 rdf:type schema:PropertyValue
69 N887932d22d4641bc97d25a8713e86c13 rdf:first sg:person.015770322107.47
70 rdf:rest N517febb53e6c4bdbae175d9877101f4a
71 N9aa105e5b4ad4dfba70aeb3fcb1e03df schema:name Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo 3, Norway
72 rdf:type schema:Organization
73 Na0bf100fb0f240f9b8194ed31b735dd8 rdf:first sg:person.0625750307.44
74 rdf:rest Ndd76e22005bf43de970c0a76ea8254f8
75 Ndc880f0563154c4796f3814f600f6bc1 rdf:first sg:person.01010032723.32
76 rdf:rest N0733eb4058e047ed83f1becc0d97c4c6
77 Ndd76e22005bf43de970c0a76ea8254f8 rdf:first sg:person.0637164323.91
78 rdf:rest rdf:nil
79 Ne01f0e8ac8f24961bfe8b86485fc8681 schema:name Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo 3, Norway
80 rdf:type schema:Organization
81 Nea3688ba1e244f6980b6991b173996fd schema:location Dordrecht
82 schema:name Springer Netherlands
83 rdf:type schema:Organisation
84 Neb877547069146d9a0b5fd88a15efd2c schema:familyName Annett
85 schema:givenName James F.
86 rdf:type schema:Person
87 Nee837832a77d4659bf3f8ae0c5a5b9e4 schema:name All-Russian Electrical Engineering Institute, 12 Krasnokazar-mennaya Street, 111250, Moscow, Russian Federation
88 rdf:type schema:Organization
89 Nf47e321a877b4555a24009a4de39fc48 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
95 schema:name Materials Engineering
96 rdf:type schema:DefinedTerm
97 sg:person.01010032723.32 schema:affiliation N9aa105e5b4ad4dfba70aeb3fcb1e03df
98 schema:familyName Baziljevich
99 schema:givenName M.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010032723.32
101 rdf:type schema:Person
102 sg:person.01041136063.62 schema:affiliation N5765256a22204f228e7fc63129f8552b
103 schema:familyName Johansen
104 schema:givenName T. H.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041136063.62
106 rdf:type schema:Person
107 sg:person.015770322107.47 schema:affiliation Nee837832a77d4659bf3f8ae0c5a5b9e4
108 schema:familyName Fisher
109 schema:givenName L. M.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770322107.47
111 rdf:type schema:Person
112 sg:person.0625750307.44 schema:affiliation https://www.grid.ac/institutes/grid.473298.3
113 schema:familyName Rakhmanov
114 schema:givenName A. L.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625750307.44
116 rdf:type schema:Person
117 sg:person.0637164323.91 schema:affiliation N4181154ac60f459fbcdd8261ed811ab7
118 schema:familyName Yampol’skii
119 schema:givenName V. A.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637164323.91
121 rdf:type schema:Person
122 sg:person.0744371263.45 schema:affiliation Ne01f0e8ac8f24961bfe8b86485fc8681
123 schema:familyName Goa
124 schema:givenName P. E.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744371263.45
126 rdf:type schema:Person
127 https://doi.org/10.1016/0921-4534(93)90919-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1023143539
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0921-4534(94)90554-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000487320
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0921-4526(99)02058-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047187841
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.46.3638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060563661
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.56.5622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060586382
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.57.575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060588181
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.58.2878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060589706
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.59.r6639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592357
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.65.3197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801736
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.76.4030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813224
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.8.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816671
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/revmodphys.68.911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839381
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1142/s0217979295000422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062941287
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1209/epl/i1998-00167-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064235061
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.473298.3 schema:alternateName Institute of Theoretical and Applied Electrodynamics
156 schema:name Institute for Theoretical and Applied Electrodynamics Russian Academy of Science, 13/19 Izhorskaya Street, 127412, Moscow, Russian Federation
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...