Si/Ge Nanostructures For Led View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

G. E. Cirlin , V. G. Talalaev , N. D. Zakharov , P. Werner

ABSTRACT

Si/Ge heterostructures are of great interest from the viewpoint of fundamental physics and the possibility of their integration into silicon-based technology for low-cost components in the fiber-optic communication wavelength [1]. Active optical Si/Ge components (photodetectors and light emitters) are expected to operate in the near-infrared spectral range (around 1.55 μm). High-speed near-infrared Ge photodetector integrated on Si chips was recently reported [2]. The most serious problem for application of near- infrared emission from Ge/Si heterostructures is the low luminescence efficiency (≤10-4), especially at room temperature. The conservation momentum rule limits the luminescence efficiency because of the indirect band structure of SiGe systems. The desire to create Si-based light-emitters caused many attempts to overcome the low radiative efficiency in Si such as porous silicon [3], doping of Si with rare-earth impurities 4], inserting of direct band material (InAs) in a silicon matrix [5] etc. Another approach to overcome the problem of the indirect k-space transitions in Si/Ge system involves the spatial localization of the injected carriers in quasi-zero-dimensional Ge islands embedded into Si matrix (in the other words, the concept of the quantum dots, QDs [6]). In the last case, most useful is considered to be self-assembled quantum dot arrays, produced by the Stranski-Krastanow growth mechanism. It is well known that Ge/Si system is a prominent example of Stranski-Krastanow growth mode, where three-dimensional (3D) islands appear at the surface after exceeding of a certain critical thickness [7]. More... »

PAGES

79-88

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-0149-6_9

DOI

http://dx.doi.org/10.1007/978-94-010-0149-6_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031097986


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A. F. Ioffe Physico-Technical Institute RAS, Politechicheskaya 26, 194021, St.Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Planck-Institute for Microstructure Physics, Weinberg 2, D-06120, Halle/Saale, Germany", 
            "Institute for Analytical Instrumentation RAS, Rizhsky 26, 198103, St.Petersburg, Russia", 
            "A. F. Ioffe Physico-Technical Institute RAS, Politechicheskaya 26, 194021, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cirlin", 
        "givenName": "G. E.", 
        "id": "sg:person.014222264064.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222264064.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg State University Petrodvorets, 198504, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "Max-Planck-Institute for Microstructure Physics, Weinberg 2, D-06120, Halle/Saale, Germany", 
            "St. Petersburg State University Petrodvorets, 198504, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talalaev", 
        "givenName": "V. G.", 
        "id": "sg:person.0615207126.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institute for Microstructure Physics, Weinberg 2, D-06120, Halle/Saale, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Planck-Institute for Microstructure Physics, Weinberg 2, D-06120, Halle/Saale, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zakharov", 
        "givenName": "N. D.", 
        "id": "sg:person.010544170161.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544170161.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institute for Microstructure Physics, Weinberg 2, D-06120, Halle/Saale, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Planck-Institute for Microstructure Physics, Weinberg 2, D-06120, Halle/Saale, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werner", 
        "givenName": "P.", 
        "id": "sg:person.0703230070.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "Si/Ge heterostructures are of great interest from the viewpoint of fundamental physics and the possibility of their integration into silicon-based technology for low-cost components in the fiber-optic communication wavelength [1]. Active optical Si/Ge components (photodetectors and light emitters) are expected to operate in the near-infrared spectral range (around 1.55 \u03bcm). High-speed near-infrared Ge photodetector integrated on Si chips was recently reported [2]. The most serious problem for application of near- infrared emission from Ge/Si heterostructures is the low luminescence efficiency (\u226410-4), especially at room temperature. The conservation momentum rule limits the luminescence efficiency because of the indirect band structure of SiGe systems. The desire to create Si-based light-emitters caused many attempts to overcome the low radiative efficiency in Si such as porous silicon [3], doping of Si with rare-earth impurities 4], inserting of direct band material (InAs) in a silicon matrix [5] etc. Another approach to overcome the problem of the indirect k-space transitions in Si/Ge system involves the spatial localization of the injected carriers in quasi-zero-dimensional Ge islands embedded into Si matrix (in the other words, the concept of the quantum dots, QDs [6]). In the last case, most useful is considered to be self-assembled quantum dot arrays, produced by the Stranski-Krastanow growth mechanism. It is well known that Ge/Si system is a prominent example of Stranski-Krastanow growth mode, where three-dimensional (3D) islands appear at the surface after exceeding of a certain critical thickness [7].", 
    "editor": [
      {
        "familyName": "Pavesi", 
        "givenName": "Lorenzo", 
        "type": "Person"
      }, 
      {
        "familyName": "Gaponenko", 
        "givenName": "Sergey", 
        "type": "Person"
      }, 
      {
        "familyName": "Negro", 
        "givenName": "Luca", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-0149-6_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-1194-8", 
        "978-94-010-0149-6"
      ], 
      "name": "Towards the First Silicon Laser", 
      "type": "Book"
    }, 
    "keywords": [
      "Si/Ge heterostructures", 
      "Si/Ge system", 
      "self-assembled quantum dot arrays", 
      "Ge/Si system", 
      "silicon-based technology", 
      "luminescence efficiency", 
      "Stranski\u2013Krastanow growth mode", 
      "quantum dot arrays", 
      "Ge/Si", 
      "low radiative efficiency", 
      "indirect band structure", 
      "three-dimensional islands", 
      "low luminescence efficiency", 
      "low-cost components", 
      "Ge photodetector", 
      "doping of Si", 
      "Ge nanostructures", 
      "communication wavelength", 
      "Ge heterostructures", 
      "fundamental physics", 
      "certain critical thickness", 
      "Si chip", 
      "SiGe system", 
      "Ge islands", 
      "spectral range", 
      "radiative efficiency", 
      "Si matrix", 
      "dot arrays", 
      "silicon matrix", 
      "porous silicon", 
      "injected carriers", 
      "Ge component", 
      "band structure", 
      "growth mode", 
      "momentum rule", 
      "Ge system", 
      "critical thickness", 
      "Si", 
      "space transition", 
      "growth mechanism", 
      "Si system", 
      "spatial localization", 
      "room temperature", 
      "band material", 
      "photodetectors", 
      "efficiency", 
      "heterostructures", 
      "physics", 
      "great interest", 
      "nanostructures", 
      "wavelength", 
      "chip", 
      "silicon", 
      "emission", 
      "last case", 
      "prominent example", 
      "technology", 
      "array", 
      "doping", 
      "system", 
      "carriers", 
      "LEDs", 
      "matrix", 
      "thickness", 
      "transition", 
      "applications", 
      "serious problem", 
      "materials", 
      "temperature", 
      "surface", 
      "mode", 
      "integration", 
      "components", 
      "problem", 
      "structure", 
      "range", 
      "possibility", 
      "approach", 
      "interest", 
      "islands", 
      "example", 
      "viewpoint", 
      "mechanism", 
      "localization", 
      "rules", 
      "cases", 
      "attempt", 
      "desire", 
      "fiber-optic communication wavelength", 
      "Active optical Si/Ge components", 
      "optical Si/Ge components", 
      "Si/Ge components", 
      "conservation momentum rule", 
      "rare-earth impurities 4", 
      "impurities 4", 
      "direct band material", 
      "zero-dimensional Ge islands", 
      "Stranski-Krastanow growth mechanism", 
      "Si/Ge Nanostructures"
    ], 
    "name": "Si/Ge Nanostructures For Led", 
    "pagination": "79-88", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031097986"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-0149-6_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-0149-6_9", 
      "https://app.dimensions.ai/details/publication/pub.1031097986"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_9.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-010-0149-6_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0149-6_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0149-6_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0149-6_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0149-6_9'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      23 PREDICATES      127 URIs      118 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-0149-6_9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 anzsrc-for:10
4 anzsrc-for:1007
5 schema:author N26c45837724548bd8932c3bb2465bc34
6 schema:datePublished 2003
7 schema:datePublishedReg 2003-01-01
8 schema:description Si/Ge heterostructures are of great interest from the viewpoint of fundamental physics and the possibility of their integration into silicon-based technology for low-cost components in the fiber-optic communication wavelength [1]. Active optical Si/Ge components (photodetectors and light emitters) are expected to operate in the near-infrared spectral range (around 1.55 μm). High-speed near-infrared Ge photodetector integrated on Si chips was recently reported [2]. The most serious problem for application of near- infrared emission from Ge/Si heterostructures is the low luminescence efficiency (≤10-4), especially at room temperature. The conservation momentum rule limits the luminescence efficiency because of the indirect band structure of SiGe systems. The desire to create Si-based light-emitters caused many attempts to overcome the low radiative efficiency in Si such as porous silicon [3], doping of Si with rare-earth impurities 4], inserting of direct band material (InAs) in a silicon matrix [5] etc. Another approach to overcome the problem of the indirect k-space transitions in Si/Ge system involves the spatial localization of the injected carriers in quasi-zero-dimensional Ge islands embedded into Si matrix (in the other words, the concept of the quantum dots, QDs [6]). In the last case, most useful is considered to be self-assembled quantum dot arrays, produced by the Stranski-Krastanow growth mechanism. It is well known that Ge/Si system is a prominent example of Stranski-Krastanow growth mode, where three-dimensional (3D) islands appear at the surface after exceeding of a certain critical thickness [7].
9 schema:editor Nedb1319fdb064a0c89cbc565378d0c7d
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N86503c6b2d9645518e9f78af48b7fc8c
14 schema:keywords Active optical Si/Ge components
15 Ge component
16 Ge heterostructures
17 Ge islands
18 Ge nanostructures
19 Ge photodetector
20 Ge system
21 Ge/Si
22 Ge/Si system
23 LEDs
24 Si
25 Si chip
26 Si matrix
27 Si system
28 Si/Ge Nanostructures
29 Si/Ge components
30 Si/Ge heterostructures
31 Si/Ge system
32 SiGe system
33 Stranski-Krastanow growth mechanism
34 Stranski–Krastanow growth mode
35 applications
36 approach
37 array
38 attempt
39 band material
40 band structure
41 carriers
42 cases
43 certain critical thickness
44 chip
45 communication wavelength
46 components
47 conservation momentum rule
48 critical thickness
49 desire
50 direct band material
51 doping
52 doping of Si
53 dot arrays
54 efficiency
55 emission
56 example
57 fiber-optic communication wavelength
58 fundamental physics
59 great interest
60 growth mechanism
61 growth mode
62 heterostructures
63 impurities 4
64 indirect band structure
65 injected carriers
66 integration
67 interest
68 islands
69 last case
70 localization
71 low luminescence efficiency
72 low radiative efficiency
73 low-cost components
74 luminescence efficiency
75 materials
76 matrix
77 mechanism
78 mode
79 momentum rule
80 nanostructures
81 optical Si/Ge components
82 photodetectors
83 physics
84 porous silicon
85 possibility
86 problem
87 prominent example
88 quantum dot arrays
89 radiative efficiency
90 range
91 rare-earth impurities 4
92 room temperature
93 rules
94 self-assembled quantum dot arrays
95 serious problem
96 silicon
97 silicon matrix
98 silicon-based technology
99 space transition
100 spatial localization
101 spectral range
102 structure
103 surface
104 system
105 technology
106 temperature
107 thickness
108 three-dimensional islands
109 transition
110 viewpoint
111 wavelength
112 zero-dimensional Ge islands
113 schema:name Si/Ge Nanostructures For Led
114 schema:pagination 79-88
115 schema:productId N5932a9ba0fe74a14af5d87c396bd21ea
116 Ne03ee1e84ae24747b82e3f93300b9819
117 schema:publisher Naf71ed24372942c283186c89737308e4
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031097986
119 https://doi.org/10.1007/978-94-010-0149-6_9
120 schema:sdDatePublished 2021-12-01T20:13
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher N0e6b7e90d09243e8a3a28f9ec7059999
123 schema:url https://doi.org/10.1007/978-94-010-0149-6_9
124 sgo:license sg:explorer/license/
125 sgo:sdDataset chapters
126 rdf:type schema:Chapter
127 N0e6b7e90d09243e8a3a28f9ec7059999 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N18e2068d1788483a894b5e68683bc36a rdf:first Nab5c6ba6ff154b27ba9a7fb2676fee92
130 rdf:rest Nf2d63fcdb0474ef2bd675bb8d443973d
131 N26c45837724548bd8932c3bb2465bc34 rdf:first sg:person.014222264064.92
132 rdf:rest N4d0da8f5007c462a98e29b29bdf6cca4
133 N46c04d0e227044bc94046efeb782bd00 schema:familyName Pavesi
134 schema:givenName Lorenzo
135 rdf:type schema:Person
136 N4d0da8f5007c462a98e29b29bdf6cca4 rdf:first sg:person.0615207126.40
137 rdf:rest N5f4c5638677448bd9fc843e5d19a87c1
138 N5932a9ba0fe74a14af5d87c396bd21ea schema:name doi
139 schema:value 10.1007/978-94-010-0149-6_9
140 rdf:type schema:PropertyValue
141 N5f4c5638677448bd9fc843e5d19a87c1 rdf:first sg:person.010544170161.07
142 rdf:rest Ncc19cee7f930423a99a1b5294e837627
143 N6bc4b458073947009326a420a65ce9b6 schema:familyName Negro
144 schema:givenName Luca
145 rdf:type schema:Person
146 N86503c6b2d9645518e9f78af48b7fc8c schema:isbn 978-1-4020-1194-8
147 978-94-010-0149-6
148 schema:name Towards the First Silicon Laser
149 rdf:type schema:Book
150 Nab5c6ba6ff154b27ba9a7fb2676fee92 schema:familyName Gaponenko
151 schema:givenName Sergey
152 rdf:type schema:Person
153 Naf71ed24372942c283186c89737308e4 schema:name Springer Nature
154 rdf:type schema:Organisation
155 Ncc19cee7f930423a99a1b5294e837627 rdf:first sg:person.0703230070.47
156 rdf:rest rdf:nil
157 Ne03ee1e84ae24747b82e3f93300b9819 schema:name dimensions_id
158 schema:value pub.1031097986
159 rdf:type schema:PropertyValue
160 Nedb1319fdb064a0c89cbc565378d0c7d rdf:first N46c04d0e227044bc94046efeb782bd00
161 rdf:rest N18e2068d1788483a894b5e68683bc36a
162 Nf2d63fcdb0474ef2bd675bb8d443973d rdf:first N6bc4b458073947009326a420a65ce9b6
163 rdf:rest rdf:nil
164 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
165 schema:name Engineering
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
168 schema:name Materials Engineering
169 rdf:type schema:DefinedTerm
170 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
171 schema:name Technology
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
174 schema:name Nanotechnology
175 rdf:type schema:DefinedTerm
176 sg:person.010544170161.07 schema:affiliation grid-institutes:None
177 schema:familyName Zakharov
178 schema:givenName N. D.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544170161.07
180 rdf:type schema:Person
181 sg:person.014222264064.92 schema:affiliation grid-institutes:None
182 schema:familyName Cirlin
183 schema:givenName G. E.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222264064.92
185 rdf:type schema:Person
186 sg:person.0615207126.40 schema:affiliation grid-institutes:grid.15447.33
187 schema:familyName Talalaev
188 schema:givenName V. G.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40
190 rdf:type schema:Person
191 sg:person.0703230070.47 schema:affiliation grid-institutes:None
192 schema:familyName Werner
193 schema:givenName P.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47
195 rdf:type schema:Person
196 grid-institutes:None schema:alternateName A. F. Ioffe Physico-Technical Institute RAS, Politechicheskaya 26, 194021, St.Petersburg, Russia
197 Max-Planck-Institute for Microstructure Physics, Weinberg 2, D-06120, Halle/Saale, Germany
198 schema:name A. F. Ioffe Physico-Technical Institute RAS, Politechicheskaya 26, 194021, St.Petersburg, Russia
199 Institute for Analytical Instrumentation RAS, Rizhsky 26, 198103, St.Petersburg, Russia
200 Max-Planck-Institute for Microstructure Physics, Weinberg 2, D-06120, Halle/Saale, Germany
201 rdf:type schema:Organization
202 grid-institutes:grid.15447.33 schema:alternateName St. Petersburg State University Petrodvorets, 198504, St. Petersburg, Russia
203 schema:name Max-Planck-Institute for Microstructure Physics, Weinberg 2, D-06120, Halle/Saale, Germany
204 St. Petersburg State University Petrodvorets, 198504, St. Petersburg, Russia
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...