Assimilation of Hydrographic Data and Analysis of Model Bias View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Keith Haines

ABSTRACT

In this chapter we look at the assimilation of subsurface temperature profile data. Particular attention will be paid to covariances with salinity, and to the analysis of model bias in these fields. Up to now most subsurface data consists of temperature (T) profiles only without coincident salinity, although in the near future the ARGO float program will provide regular salinity measurements and the algorithms described here will need to be augmented. As discussed earlier in chapter Altimeter Covariances andErrors Treatment, section 1, the vast majority of T profile data from Expendable bathythermographs (XBTs) or from moorings tend to be of limited depth. These data are the main resource for ocean assimilation for seasonal forecasting activities and we shall illustrate the methods used by reference to results from the European Centre for Medium-range Weather Forecasts (ECMWF) seasonal forecasting system. More... »

PAGES

309-320

Book

TITLE

Data Assimilation for the Earth System

ISBN

978-1-4020-1593-9
978-94-010-0029-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27

DOI

http://dx.doi.org/10.1007/978-94-010-0029-1_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051251728


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Environmental Systems Science Centre, Reading University, 3 Earley Gate, RG6 6AL, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haines", 
        "givenName": "Keith", 
        "id": "sg:person.01052227550.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052227550.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<4292:iosfas>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005930407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2002)130<0089:saitpo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009158019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712454512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010498365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0967-0637(98)00082-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018774033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(1997)014<0175:amogcm>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022983121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(2003)033<0485:iowmtd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023772374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(1999)016<2011:uottsr>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025819277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1994)007<0929:igssta>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033010889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1999)029<1468:dwmffa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044379716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1982.tb01806.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047401590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1982.tb01806.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047401590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0967-0637(97)00054-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049870729"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "In this chapter we look at the assimilation of subsurface temperature profile data. Particular attention will be paid to covariances with salinity, and to the analysis of model bias in these fields. Up to now most subsurface data consists of temperature (T) profiles only without coincident salinity, although in the near future the ARGO float program will provide regular salinity measurements and the algorithms described here will need to be augmented. As discussed earlier in chapter Altimeter Covariances andErrors Treatment, section 1, the vast majority of T profile data from Expendable bathythermographs (XBTs) or from moorings tend to be of limited depth. These data are the main resource for ocean assimilation for seasonal forecasting activities and we shall illustrate the methods used by reference to results from the European Centre for Medium-range Weather Forecasts (ECMWF) seasonal forecasting system.", 
    "editor": [
      {
        "familyName": "Swinbank", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Shutyaev", 
        "givenName": "Victor", 
        "type": "Person"
      }, 
      {
        "familyName": "Lahoz", 
        "givenName": "William Albert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-0029-1_27", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-1593-9", 
        "978-94-010-0029-1"
      ], 
      "name": "Data Assimilation for the Earth System", 
      "type": "Book"
    }, 
    "name": "Assimilation of Hydrographic Data and Analysis of Model Bias", 
    "pagination": "309-320", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051251728"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-0029-1_27"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f424675a5a08fff144cab241bdf3631649ffffcc43ac759a7e747d1c39fc7017"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-0029-1_27", 
      "https://app.dimensions.ai/details/publication/pub.1051251728"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112074_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-010-0029-1_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-0029-1_27 schema:about anzsrc-for:04
2 anzsrc-for:0404
3 schema:author Nf8905cb1de4d4f05ab348194ce6a2c1f
4 schema:citation https://doi.org/10.1002/qj.49712454512
5 https://doi.org/10.1016/s0967-0637(97)00054-x
6 https://doi.org/10.1016/s0967-0637(98)00082-x
7 https://doi.org/10.1111/j.2153-3490.1982.tb01806.x
8 https://doi.org/10.1175/1520-0426(1997)014<0175:amogcm>2.0.co;2
9 https://doi.org/10.1175/1520-0426(1999)016<2011:uottsr>2.0.co;2
10 https://doi.org/10.1175/1520-0442(1994)007<0929:igssta>2.0.co;2
11 https://doi.org/10.1175/1520-0442(2001)014<4292:iosfas>2.0.co;2
12 https://doi.org/10.1175/1520-0485(1999)029<1468:dwmffa>2.0.co;2
13 https://doi.org/10.1175/1520-0485(2003)033<0485:iowmtd>2.0.co;2
14 https://doi.org/10.1175/1520-0493(2002)130<0089:saitpo>2.0.co;2
15 schema:datePublished 2003
16 schema:datePublishedReg 2003-01-01
17 schema:description In this chapter we look at the assimilation of subsurface temperature profile data. Particular attention will be paid to covariances with salinity, and to the analysis of model bias in these fields. Up to now most subsurface data consists of temperature (T) profiles only without coincident salinity, although in the near future the ARGO float program will provide regular salinity measurements and the algorithms described here will need to be augmented. As discussed earlier in chapter Altimeter Covariances andErrors Treatment, section 1, the vast majority of T profile data from Expendable bathythermographs (XBTs) or from moorings tend to be of limited depth. These data are the main resource for ocean assimilation for seasonal forecasting activities and we shall illustrate the methods used by reference to results from the European Centre for Medium-range Weather Forecasts (ECMWF) seasonal forecasting system.
18 schema:editor N26e23917bc3e4607a879db8c4240a371
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N67b0f0e526634113bc070f50940dbda8
23 schema:name Assimilation of Hydrographic Data and Analysis of Model Bias
24 schema:pagination 309-320
25 schema:productId N167e4105a02a4290a482832091c6a413
26 Nb2d20f0bd3b145f095444d33e64b97c6
27 Nb3cfabff1b254863bbdcd87c50602567
28 schema:publisher N4c241cf09b7d4043983dbc4057fce933
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051251728
30 https://doi.org/10.1007/978-94-010-0029-1_27
31 schema:sdDatePublished 2019-04-16T08:43
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nf5b579b21de84b99bc14d5f5355dc1b0
34 schema:url https://link.springer.com/10.1007%2F978-94-010-0029-1_27
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N167e4105a02a4290a482832091c6a413 schema:name readcube_id
39 schema:value f424675a5a08fff144cab241bdf3631649ffffcc43ac759a7e747d1c39fc7017
40 rdf:type schema:PropertyValue
41 N258ec104e7124b92966b1d63c18926cc schema:familyName Swinbank
42 schema:givenName Richard
43 rdf:type schema:Person
44 N26e23917bc3e4607a879db8c4240a371 rdf:first N258ec104e7124b92966b1d63c18926cc
45 rdf:rest Nf4cd129c432948368da7b32fbb1a041b
46 N4c241cf09b7d4043983dbc4057fce933 schema:location Dordrecht
47 schema:name Springer Netherlands
48 rdf:type schema:Organisation
49 N67b0f0e526634113bc070f50940dbda8 schema:isbn 978-1-4020-1593-9
50 978-94-010-0029-1
51 schema:name Data Assimilation for the Earth System
52 rdf:type schema:Book
53 N7bf9c578769b4243965f19ba2b98ff5c rdf:first Nc0970e974bd64f6184914d4e4c2ddd71
54 rdf:rest rdf:nil
55 Nb2d20f0bd3b145f095444d33e64b97c6 schema:name dimensions_id
56 schema:value pub.1051251728
57 rdf:type schema:PropertyValue
58 Nb3cfabff1b254863bbdcd87c50602567 schema:name doi
59 schema:value 10.1007/978-94-010-0029-1_27
60 rdf:type schema:PropertyValue
61 Nc0970e974bd64f6184914d4e4c2ddd71 schema:familyName Lahoz
62 schema:givenName William Albert
63 rdf:type schema:Person
64 Nf4cd129c432948368da7b32fbb1a041b rdf:first Nf68693c4bc9e4308a95a533a3905f31e
65 rdf:rest N7bf9c578769b4243965f19ba2b98ff5c
66 Nf5b579b21de84b99bc14d5f5355dc1b0 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nf68693c4bc9e4308a95a533a3905f31e schema:familyName Shutyaev
69 schema:givenName Victor
70 rdf:type schema:Person
71 Nf8905cb1de4d4f05ab348194ce6a2c1f rdf:first sg:person.01052227550.65
72 rdf:rest rdf:nil
73 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
74 schema:name Earth Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
77 schema:name Geophysics
78 rdf:type schema:DefinedTerm
79 sg:person.01052227550.65 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
80 schema:familyName Haines
81 schema:givenName Keith
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052227550.65
83 rdf:type schema:Person
84 https://doi.org/10.1002/qj.49712454512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010498365
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/s0967-0637(97)00054-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049870729
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/s0967-0637(98)00082-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018774033
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1111/j.2153-3490.1982.tb01806.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047401590
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1175/1520-0426(1997)014<0175:amogcm>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022983121
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1175/1520-0426(1999)016<2011:uottsr>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025819277
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1175/1520-0442(1994)007<0929:igssta>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033010889
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1175/1520-0442(2001)014<4292:iosfas>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005930407
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1175/1520-0485(1999)029<1468:dwmffa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044379716
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1175/1520-0485(2003)033<0485:iowmtd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023772374
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1175/1520-0493(2002)130<0089:saitpo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009158019
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
107 schema:name Environmental Systems Science Centre, Reading University, 3 Earley Gate, RG6 6AL, Reading, UK
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...