Assimilation of Hydrographic Data and Analysis of Model Bias View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Keith Haines

ABSTRACT

In this chapter we look at the assimilation of subsurface temperature profile data. Particular attention will be paid to covariances with salinity, and to the analysis of model bias in these fields. Up to now most subsurface data consists of temperature (T) profiles only without coincident salinity, although in the near future the ARGO float program will provide regular salinity measurements and the algorithms described here will need to be augmented. As discussed earlier in chapter Altimeter Covariances andErrors Treatment, section 1, the vast majority of T profile data from Expendable bathythermographs (XBTs) or from moorings tend to be of limited depth. These data are the main resource for ocean assimilation for seasonal forecasting activities and we shall illustrate the methods used by reference to results from the European Centre for Medium-range Weather Forecasts (ECMWF) seasonal forecasting system. More... »

PAGES

309-320

Book

TITLE

Data Assimilation for the Earth System

ISBN

978-1-4020-1593-9
978-94-010-0029-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27

DOI

http://dx.doi.org/10.1007/978-94-010-0029-1_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051251728


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Environmental Systems Science Centre, Reading University, 3 Earley Gate, RG6 6AL, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haines", 
        "givenName": "Keith", 
        "id": "sg:person.01052227550.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052227550.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<4292:iosfas>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005930407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2002)130<0089:saitpo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009158019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712454512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010498365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0967-0637(98)00082-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018774033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(1997)014<0175:amogcm>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022983121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(2003)033<0485:iowmtd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023772374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(1999)016<2011:uottsr>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025819277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1994)007<0929:igssta>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033010889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1999)029<1468:dwmffa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044379716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1982.tb01806.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047401590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1982.tb01806.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047401590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0967-0637(97)00054-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049870729"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "In this chapter we look at the assimilation of subsurface temperature profile data. Particular attention will be paid to covariances with salinity, and to the analysis of model bias in these fields. Up to now most subsurface data consists of temperature (T) profiles only without coincident salinity, although in the near future the ARGO float program will provide regular salinity measurements and the algorithms described here will need to be augmented. As discussed earlier in chapter Altimeter Covariances andErrors Treatment, section 1, the vast majority of T profile data from Expendable bathythermographs (XBTs) or from moorings tend to be of limited depth. These data are the main resource for ocean assimilation for seasonal forecasting activities and we shall illustrate the methods used by reference to results from the European Centre for Medium-range Weather Forecasts (ECMWF) seasonal forecasting system.", 
    "editor": [
      {
        "familyName": "Swinbank", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Shutyaev", 
        "givenName": "Victor", 
        "type": "Person"
      }, 
      {
        "familyName": "Lahoz", 
        "givenName": "William Albert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-010-0029-1_27", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-1593-9", 
        "978-94-010-0029-1"
      ], 
      "name": "Data Assimilation for the Earth System", 
      "type": "Book"
    }, 
    "name": "Assimilation of Hydrographic Data and Analysis of Model Bias", 
    "pagination": "309-320", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051251728"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-010-0029-1_27"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f424675a5a08fff144cab241bdf3631649ffffcc43ac759a7e747d1c39fc7017"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-010-0029-1_27", 
      "https://app.dimensions.ai/details/publication/pub.1051251728"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112074_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-010-0029-1_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-010-0029-1_27'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-010-0029-1_27 schema:about anzsrc-for:04
2 anzsrc-for:0404
3 schema:author Nebe12f786ad143a0801c527304f9af7f
4 schema:citation https://doi.org/10.1002/qj.49712454512
5 https://doi.org/10.1016/s0967-0637(97)00054-x
6 https://doi.org/10.1016/s0967-0637(98)00082-x
7 https://doi.org/10.1111/j.2153-3490.1982.tb01806.x
8 https://doi.org/10.1175/1520-0426(1997)014<0175:amogcm>2.0.co;2
9 https://doi.org/10.1175/1520-0426(1999)016<2011:uottsr>2.0.co;2
10 https://doi.org/10.1175/1520-0442(1994)007<0929:igssta>2.0.co;2
11 https://doi.org/10.1175/1520-0442(2001)014<4292:iosfas>2.0.co;2
12 https://doi.org/10.1175/1520-0485(1999)029<1468:dwmffa>2.0.co;2
13 https://doi.org/10.1175/1520-0485(2003)033<0485:iowmtd>2.0.co;2
14 https://doi.org/10.1175/1520-0493(2002)130<0089:saitpo>2.0.co;2
15 schema:datePublished 2003
16 schema:datePublishedReg 2003-01-01
17 schema:description In this chapter we look at the assimilation of subsurface temperature profile data. Particular attention will be paid to covariances with salinity, and to the analysis of model bias in these fields. Up to now most subsurface data consists of temperature (T) profiles only without coincident salinity, although in the near future the ARGO float program will provide regular salinity measurements and the algorithms described here will need to be augmented. As discussed earlier in chapter Altimeter Covariances andErrors Treatment, section 1, the vast majority of T profile data from Expendable bathythermographs (XBTs) or from moorings tend to be of limited depth. These data are the main resource for ocean assimilation for seasonal forecasting activities and we shall illustrate the methods used by reference to results from the European Centre for Medium-range Weather Forecasts (ECMWF) seasonal forecasting system.
18 schema:editor N0f5ba6a455764435aa82014ca4d07b28
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N7d23e492ca1b4609a69bf708e07f43b3
23 schema:name Assimilation of Hydrographic Data and Analysis of Model Bias
24 schema:pagination 309-320
25 schema:productId N00c48ba4e10d44f5b5d1d46745433dba
26 N4b52cbf9fb0d486490620296e2db2f0f
27 Nd0ceec72c9a54c0da02a90209aa3c27b
28 schema:publisher N61fe5116bf6145f0b8de56cd291722db
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051251728
30 https://doi.org/10.1007/978-94-010-0029-1_27
31 schema:sdDatePublished 2019-04-16T08:43
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nd9ee2f3715324e97add392c7f1bf0f18
34 schema:url https://link.springer.com/10.1007%2F978-94-010-0029-1_27
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N00c48ba4e10d44f5b5d1d46745433dba schema:name readcube_id
39 schema:value f424675a5a08fff144cab241bdf3631649ffffcc43ac759a7e747d1c39fc7017
40 rdf:type schema:PropertyValue
41 N0f5ba6a455764435aa82014ca4d07b28 rdf:first Nc850e3b6c5d14ca6bccb6157ad9357cf
42 rdf:rest N39e9c2ced41d4f818518d35451eeac7c
43 N39e9c2ced41d4f818518d35451eeac7c rdf:first Nf700be64eb9143b89c1138fe2ff93ae0
44 rdf:rest Nce1790536c9240c9a54a0dd19889d34f
45 N4b52cbf9fb0d486490620296e2db2f0f schema:name doi
46 schema:value 10.1007/978-94-010-0029-1_27
47 rdf:type schema:PropertyValue
48 N5b707f8ec3f04d0093e10f9245d36851 schema:familyName Lahoz
49 schema:givenName William Albert
50 rdf:type schema:Person
51 N61fe5116bf6145f0b8de56cd291722db schema:location Dordrecht
52 schema:name Springer Netherlands
53 rdf:type schema:Organisation
54 N7d23e492ca1b4609a69bf708e07f43b3 schema:isbn 978-1-4020-1593-9
55 978-94-010-0029-1
56 schema:name Data Assimilation for the Earth System
57 rdf:type schema:Book
58 Nc850e3b6c5d14ca6bccb6157ad9357cf schema:familyName Swinbank
59 schema:givenName Richard
60 rdf:type schema:Person
61 Nce1790536c9240c9a54a0dd19889d34f rdf:first N5b707f8ec3f04d0093e10f9245d36851
62 rdf:rest rdf:nil
63 Nd0ceec72c9a54c0da02a90209aa3c27b schema:name dimensions_id
64 schema:value pub.1051251728
65 rdf:type schema:PropertyValue
66 Nd9ee2f3715324e97add392c7f1bf0f18 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nebe12f786ad143a0801c527304f9af7f rdf:first sg:person.01052227550.65
69 rdf:rest rdf:nil
70 Nf700be64eb9143b89c1138fe2ff93ae0 schema:familyName Shutyaev
71 schema:givenName Victor
72 rdf:type schema:Person
73 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
74 schema:name Earth Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
77 schema:name Geophysics
78 rdf:type schema:DefinedTerm
79 sg:person.01052227550.65 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
80 schema:familyName Haines
81 schema:givenName Keith
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052227550.65
83 rdf:type schema:Person
84 https://doi.org/10.1002/qj.49712454512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010498365
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/s0967-0637(97)00054-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049870729
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/s0967-0637(98)00082-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018774033
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1111/j.2153-3490.1982.tb01806.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047401590
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1175/1520-0426(1997)014<0175:amogcm>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022983121
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1175/1520-0426(1999)016<2011:uottsr>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025819277
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1175/1520-0442(1994)007<0929:igssta>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033010889
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1175/1520-0442(2001)014<4292:iosfas>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005930407
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1175/1520-0485(1999)029<1468:dwmffa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044379716
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1175/1520-0485(2003)033<0485:iowmtd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023772374
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1175/1520-0493(2002)130<0089:saitpo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009158019
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
107 schema:name Environmental Systems Science Centre, Reading University, 3 Earley Gate, RG6 6AL, Reading, UK
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...