Testing of Ligands View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1980

AUTHORS

Jean-Pierre Sauvage

ABSTRACT

Molecular receptors, whose design and synthesis have been discussed in the preceding paper, are organic structures, held by covalent bonds, which are able to bind selectively substrates by the use of intermolecular interactions. These molecular interactions are of various origins: electrostatic interactions, hydrogen bonding, Van der Waals forces, etc.. The design of the receptor determines which substrate is to be bound, the energy and the specificity of complexation being governed by geometrical factors (topology of the ligand, size and shape of the internal cavity and of the substrate,. . .) and by the nature of the intermolecular interactions (electrostatic interactions for the binding of cations, presence of suitable donor binding sites for the complexation of transition metal cations, introduction of hydrogen bonds for the binding of anionic species, etc. . . .). The strength of the ligand-substrate interaction can be characterised by different physical constants. Thermodynamic (stability constants, enthalpy and entropy of formation of complexes), and kinetic parameters, are of prime importance in the definition of the properties of the ligand-substrate complex, for the understanding of the nature of the stabilising ligand-substrate interactions and in the design of new ligands. More... »

PAGES

63-73

Book

TITLE

Bioenergetics and Thermodynamics: Model Systems

ISBN

978-94-009-9037-1
978-94-009-9035-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-9035-7_7

DOI

http://dx.doi.org/10.1007/978-94-009-9035-7_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017547378


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Strasbourg", 
          "id": "https://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Institut Le Bel, Universit\u00e9 Louis Pasteur, 4 Rue Blaise Pascal, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauvage", 
        "givenName": "Jean-Pierre", 
        "id": "sg:person.01025725303.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025725303.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/hlca.19770600116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024598344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-4020(01)83410-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032967073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hlca.19780610107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045697339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00436a066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055732396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00462a055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055734473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00468a021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055734935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00483a059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055736248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00712a053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055741940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00850a051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055752820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00856a018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055753237"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980", 
    "datePublishedReg": "1980-01-01", 
    "description": "Molecular receptors, whose design and synthesis have been discussed in the preceding paper, are organic structures, held by covalent bonds, which are able to bind selectively substrates by the use of intermolecular interactions. These molecular interactions are of various origins: electrostatic interactions, hydrogen bonding, Van der Waals forces, etc.. The design of the receptor determines which substrate is to be bound, the energy and the specificity of complexation being governed by geometrical factors (topology of the ligand, size and shape of the internal cavity and of the substrate,. . .) and by the nature of the intermolecular interactions (electrostatic interactions for the binding of cations, presence of suitable donor binding sites for the complexation of transition metal cations, introduction of hydrogen bonds for the binding of anionic species, etc. . . .). The strength of the ligand-substrate interaction can be characterised by different physical constants. Thermodynamic (stability constants, enthalpy and entropy of formation of complexes), and kinetic parameters, are of prime importance in the definition of the properties of the ligand-substrate complex, for the understanding of the nature of the stabilising ligand-substrate interactions and in the design of new ligands.", 
    "editor": [
      {
        "familyName": "Braibanti", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-9035-7_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-009-9037-1", 
        "978-94-009-9035-7"
      ], 
      "name": "Bioenergetics and Thermodynamics: Model Systems", 
      "type": "Book"
    }, 
    "name": "Testing of Ligands", 
    "pagination": "63-73", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017547378"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-9035-7_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "539a381e226ad95e9ca416f432a2eaaf72b9502a31ac224294d9e6a2bde7d4e8"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-9035-7_7", 
      "https://app.dimensions.ai/details/publication/pub.1017547378"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106822_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-009-9035-7_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-9035-7_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-9035-7_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-9035-7_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-9035-7_7'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-9035-7_7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N1d209ab15731484fb415444a3859dafa
4 schema:citation https://doi.org/10.1002/hlca.19770600116
5 https://doi.org/10.1002/hlca.19780610107
6 https://doi.org/10.1016/s0040-4020(01)83410-4
7 https://doi.org/10.1021/ja00436a066
8 https://doi.org/10.1021/ja00462a055
9 https://doi.org/10.1021/ja00468a021
10 https://doi.org/10.1021/ja00483a059
11 https://doi.org/10.1021/ja00712a053
12 https://doi.org/10.1021/ja00850a051
13 https://doi.org/10.1021/ja00856a018
14 schema:datePublished 1980
15 schema:datePublishedReg 1980-01-01
16 schema:description Molecular receptors, whose design and synthesis have been discussed in the preceding paper, are organic structures, held by covalent bonds, which are able to bind selectively substrates by the use of intermolecular interactions. These molecular interactions are of various origins: electrostatic interactions, hydrogen bonding, Van der Waals forces, etc.. The design of the receptor determines which substrate is to be bound, the energy and the specificity of complexation being governed by geometrical factors (topology of the ligand, size and shape of the internal cavity and of the substrate,. . .) and by the nature of the intermolecular interactions (electrostatic interactions for the binding of cations, presence of suitable donor binding sites for the complexation of transition metal cations, introduction of hydrogen bonds for the binding of anionic species, etc. . . .). The strength of the ligand-substrate interaction can be characterised by different physical constants. Thermodynamic (stability constants, enthalpy and entropy of formation of complexes), and kinetic parameters, are of prime importance in the definition of the properties of the ligand-substrate complex, for the understanding of the nature of the stabilising ligand-substrate interactions and in the design of new ligands.
17 schema:editor N1f779ee5237f4ea1888f5eabe1971908
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N5dd9b6bf50ff4cb8b104840d00174c4a
22 schema:name Testing of Ligands
23 schema:pagination 63-73
24 schema:productId N055c118d6cc04c50892531dad2974d7b
25 N0a67490552d94742b8d38a01ec82fa85
26 Nef433d2ffa4d47279d03b1f8bcf3de68
27 schema:publisher Nf59564aa76bf45a49f285abeaa1d1906
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017547378
29 https://doi.org/10.1007/978-94-009-9035-7_7
30 schema:sdDatePublished 2019-04-16T10:08
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N4036411b65c5427683261fe55f594e88
33 schema:url https://link.springer.com/10.1007%2F978-94-009-9035-7_7
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N055c118d6cc04c50892531dad2974d7b schema:name dimensions_id
38 schema:value pub.1017547378
39 rdf:type schema:PropertyValue
40 N0a67490552d94742b8d38a01ec82fa85 schema:name doi
41 schema:value 10.1007/978-94-009-9035-7_7
42 rdf:type schema:PropertyValue
43 N1d209ab15731484fb415444a3859dafa rdf:first sg:person.01025725303.67
44 rdf:rest rdf:nil
45 N1f779ee5237f4ea1888f5eabe1971908 rdf:first N7c83f4bdd7564b30ac8d8e993e82f495
46 rdf:rest rdf:nil
47 N4036411b65c5427683261fe55f594e88 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N5dd9b6bf50ff4cb8b104840d00174c4a schema:isbn 978-94-009-9035-7
50 978-94-009-9037-1
51 schema:name Bioenergetics and Thermodynamics: Model Systems
52 rdf:type schema:Book
53 N7c83f4bdd7564b30ac8d8e993e82f495 schema:familyName Braibanti
54 schema:givenName A.
55 rdf:type schema:Person
56 Nef433d2ffa4d47279d03b1f8bcf3de68 schema:name readcube_id
57 schema:value 539a381e226ad95e9ca416f432a2eaaf72b9502a31ac224294d9e6a2bde7d4e8
58 rdf:type schema:PropertyValue
59 Nf59564aa76bf45a49f285abeaa1d1906 schema:location Dordrecht
60 schema:name Springer Netherlands
61 rdf:type schema:Organisation
62 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
63 schema:name Chemical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Chemistry (incl. Structural)
67 rdf:type schema:DefinedTerm
68 sg:person.01025725303.67 schema:affiliation https://www.grid.ac/institutes/grid.11843.3f
69 schema:familyName Sauvage
70 schema:givenName Jean-Pierre
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025725303.67
72 rdf:type schema:Person
73 https://doi.org/10.1002/hlca.19770600116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024598344
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1002/hlca.19780610107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045697339
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/s0040-4020(01)83410-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032967073
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1021/ja00436a066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055732396
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1021/ja00462a055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055734473
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1021/ja00468a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055734935
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1021/ja00483a059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055736248
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1021/ja00712a053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055741940
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1021/ja00850a051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055752820
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1021/ja00856a018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055753237
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.11843.3f schema:alternateName University of Strasbourg
94 schema:name Institut Le Bel, Université Louis Pasteur, 4 Rue Blaise Pascal, Strasbourg, France
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...