1982
AUTHORS ABSTRACTIn this chapter we review the various growth kinetics models (“crystal growth theories”) for the steady-state formation of a solid phase from a fluid nutrient phase near equilibrium. We concentrate only on the interfacial atomic kinetics. Macroscopic growth morphologies (e.g., step bunching and macrosteps) 1, 3, 23, 55 are not considered. Also, transport in the bulk nutrient, i.e., fluid dynamics, is only treated when it strongly modifies the interfacial transport. Similarly, the role of impurities 1, 2 is indicated only from a conceptual point of view. Futhermore, it is assumed that the crystalline phase, onto which growth occurs, is large on an atomic scale. More... »
PAGES315-364
Interfacial Aspects of Phase Transformations
ISBN
978-94-009-7872-0
978-94-009-7870-6
http://scigraph.springernature.com/pub.10.1007/978-94-009-7870-6_13
DOIhttp://dx.doi.org/10.1007/978-94-009-7870-6_13
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1031286632
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, University of Utah, 84112, Salt Lake City, Utah, USA",
"id": "http://www.grid.ac/institutes/grid.223827.e",
"name": [
"Department of Physics, University of Utah, 84112, Salt Lake City, Utah, USA"
],
"type": "Organization"
},
"familyName": "Rosenberger",
"givenName": "F.",
"id": "sg:person.01044572662.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044572662.68"
],
"type": "Person"
}
],
"datePublished": "1982",
"datePublishedReg": "1982-01-01",
"description": "In this chapter we review the various growth kinetics models (\u201ccrystal growth theories\u201d) for the steady-state formation of a solid phase from a fluid nutrient phase near equilibrium. We concentrate only on the interfacial atomic kinetics. Macroscopic growth morphologies (e.g., step bunching and macrosteps) 1, 3, 23, 55 are not considered. Also, transport in the bulk nutrient, i.e., fluid dynamics, is only treated when it strongly modifies the interfacial transport. Similarly, the role of impurities 1, 2 is indicated only from a conceptual point of view. Futhermore, it is assumed that the crystalline phase, onto which growth occurs, is large on an atomic scale.",
"editor": [
{
"familyName": "Mutaftschiev",
"givenName": "Boyan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-009-7870-6_13",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-94-009-7872-0",
"978-94-009-7870-6"
],
"name": "Interfacial Aspects of Phase Transformations",
"type": "Book"
},
"keywords": [
"growth kinetic model",
"fluid dynamics",
"interfacial transport",
"crystalline phase",
"kinetic model",
"atomic scale",
"solid phase",
"growth kinetics",
"nutrient phase",
"bulk nutrients",
"impurity 1",
"steady-state formation",
"crystal growth kinetics",
"phase",
"kinetics",
"transport",
"atomic kinetics",
"morphology 1",
"model",
"dynamics",
"formation",
"point",
"equilibrium",
"scale",
"growth",
"chapter",
"view",
"conceptual point",
"nutrients",
"role"
],
"name": "Crystal Growth Kinetics",
"pagination": "315-364",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1031286632"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-009-7870-6_13"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-009-7870-6_13",
"https://app.dimensions.ai/details/publication/pub.1031286632"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_180.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-94-009-7870-6_13"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7870-6_13'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7870-6_13'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7870-6_13'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7870-6_13'
This table displays all metadata directly associated to this object as RDF triples.
90 TRIPLES
23 PREDICATES
55 URIs
48 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-94-009-7870-6_13 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | N8c64d31422934dc4a9c156894ea00f43 |
4 | ″ | schema:datePublished | 1982 |
5 | ″ | schema:datePublishedReg | 1982-01-01 |
6 | ″ | schema:description | In this chapter we review the various growth kinetics models (“crystal growth theories”) for the steady-state formation of a solid phase from a fluid nutrient phase near equilibrium. We concentrate only on the interfacial atomic kinetics. Macroscopic growth morphologies (e.g., step bunching and macrosteps) 1, 3, 23, 55 are not considered. Also, transport in the bulk nutrient, i.e., fluid dynamics, is only treated when it strongly modifies the interfacial transport. Similarly, the role of impurities 1, 2 is indicated only from a conceptual point of view. Futhermore, it is assumed that the crystalline phase, onto which growth occurs, is large on an atomic scale. |
7 | ″ | schema:editor | N78cecfd297924becbf0c0ab376dde428 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N3c2d9c42bb9d4d8186594761f107d42e |
12 | ″ | schema:keywords | atomic kinetics |
13 | ″ | ″ | atomic scale |
14 | ″ | ″ | bulk nutrients |
15 | ″ | ″ | chapter |
16 | ″ | ″ | conceptual point |
17 | ″ | ″ | crystal growth kinetics |
18 | ″ | ″ | crystalline phase |
19 | ″ | ″ | dynamics |
20 | ″ | ″ | equilibrium |
21 | ″ | ″ | fluid dynamics |
22 | ″ | ″ | formation |
23 | ″ | ″ | growth |
24 | ″ | ″ | growth kinetic model |
25 | ″ | ″ | growth kinetics |
26 | ″ | ″ | impurity 1 |
27 | ″ | ″ | interfacial transport |
28 | ″ | ″ | kinetic model |
29 | ″ | ″ | kinetics |
30 | ″ | ″ | model |
31 | ″ | ″ | morphology 1 |
32 | ″ | ″ | nutrient phase |
33 | ″ | ″ | nutrients |
34 | ″ | ″ | phase |
35 | ″ | ″ | point |
36 | ″ | ″ | role |
37 | ″ | ″ | scale |
38 | ″ | ″ | solid phase |
39 | ″ | ″ | steady-state formation |
40 | ″ | ″ | transport |
41 | ″ | ″ | view |
42 | ″ | schema:name | Crystal Growth Kinetics |
43 | ″ | schema:pagination | 315-364 |
44 | ″ | schema:productId | N1ef5f8c3e158460ca2441d03c0b8fb2b |
45 | ″ | ″ | Ndb73f87d3251481daf5eb93eb7018cb4 |
46 | ″ | schema:publisher | N028fcc6e90bc40a18e86ee0ad97817be |
47 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031286632 |
48 | ″ | ″ | https://doi.org/10.1007/978-94-009-7870-6_13 |
49 | ″ | schema:sdDatePublished | 2022-05-10T10:40 |
50 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
51 | ″ | schema:sdPublisher | Nc98f1f0b41a64107b6c1e2942b9f28e4 |
52 | ″ | schema:url | https://doi.org/10.1007/978-94-009-7870-6_13 |
53 | ″ | sgo:license | sg:explorer/license/ |
54 | ″ | sgo:sdDataset | chapters |
55 | ″ | rdf:type | schema:Chapter |
56 | N028fcc6e90bc40a18e86ee0ad97817be | schema:name | Springer Nature |
57 | ″ | rdf:type | schema:Organisation |
58 | N1ef5f8c3e158460ca2441d03c0b8fb2b | schema:name | doi |
59 | ″ | schema:value | 10.1007/978-94-009-7870-6_13 |
60 | ″ | rdf:type | schema:PropertyValue |
61 | N3c2d9c42bb9d4d8186594761f107d42e | schema:isbn | 978-94-009-7870-6 |
62 | ″ | ″ | 978-94-009-7872-0 |
63 | ″ | schema:name | Interfacial Aspects of Phase Transformations |
64 | ″ | rdf:type | schema:Book |
65 | N4debe2e4d7cf406ebc881fb0305a5d28 | schema:familyName | Mutaftschiev |
66 | ″ | schema:givenName | Boyan |
67 | ″ | rdf:type | schema:Person |
68 | N78cecfd297924becbf0c0ab376dde428 | rdf:first | N4debe2e4d7cf406ebc881fb0305a5d28 |
69 | ″ | rdf:rest | rdf:nil |
70 | N8c64d31422934dc4a9c156894ea00f43 | rdf:first | sg:person.01044572662.68 |
71 | ″ | rdf:rest | rdf:nil |
72 | Nc98f1f0b41a64107b6c1e2942b9f28e4 | schema:name | Springer Nature - SN SciGraph project |
73 | ″ | rdf:type | schema:Organization |
74 | Ndb73f87d3251481daf5eb93eb7018cb4 | schema:name | dimensions_id |
75 | ″ | schema:value | pub.1031286632 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Engineering |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
81 | ″ | schema:name | Interdisciplinary Engineering |
82 | ″ | rdf:type | schema:DefinedTerm |
83 | sg:person.01044572662.68 | schema:affiliation | grid-institutes:grid.223827.e |
84 | ″ | schema:familyName | Rosenberger |
85 | ″ | schema:givenName | F. |
86 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044572662.68 |
87 | ″ | rdf:type | schema:Person |
88 | grid-institutes:grid.223827.e | schema:alternateName | Department of Physics, University of Utah, 84112, Salt Lake City, Utah, USA |
89 | ″ | schema:name | Department of Physics, University of Utah, 84112, Salt Lake City, Utah, USA |
90 | ″ | rdf:type | schema:Organization |