3-(11C)-Methyl-D-Glucose, an Agent for the Assessment of Regional Glucose Transport Across the Blood-Brain Barrier View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1982

AUTHORS

G. Kloster , G. Stöcklin , K. Vyska , C. Freundlieb , A. Höck , L. E. Feinendegen , H. Traupe , W. D. Heiss

ABSTRACT

The normal brain meets its energy needs solely by oxidative metabolism of D-glucose. Thus, labelled derivatives of D-glucose may be expected to be useful tracers for glucose utilization. Since D-glucose cannot freely enter the brain, but instead uses a carrier-mediated diffusion system (the hexose carrier), strict stereochemical requirements have to be met by D-glucose tracer analogues. The electronegative substituents must be in an all-cis as well as an all-equatorial configuration. Thus, all the analogues investigated so far, have that particular arrangement. Raichle et al. (1,2) studied the distribution of photosynthetically prepared 11C-D-glucose in monkeys. However, the multiple pathways of glucose metabolism present made it very difficult to interpret the data accumulated during the in vivo measurements. Ido et al. (3) synthetized the D-glucose analogue 18F-2-fluoro-2-deoxy-D-glucose (FDG) and the biodistribution was studied in mice by Gallagher et al. (4). FDG was successfully applied to the measurement of regional glucose metabolic rates in man by Reivich et al. (5) and Phelps et al. (6). FDG is transported into the brain via the hexose carrier; once inside the cell it is phosphorylated by hexokinase to yield FDG-6-phosphate which cannot be further utilized for glucolysis. FDG is thus trapped inside the cell. This is an in vivo application of the well-known autoradiographic 14C-2-deoxy-D-glucose method of Sokoloff et al. (7). Using any of these methods (3–7), an integral value of regional cerebral glucose utilization is obtained for the time period between administration of the radiopharmaceutical and recording of the data using a positron emission tomograph (PET). Other possible compounds using the same approach are 18F-3-fluoro-3-deoxy-D-glucose (8,9) and 11C-2-deoxy-D-glucose (10). More... »

PAGES

199-211

Book

TITLE

Progress in Radiopharmacology 3

ISBN

978-94-009-7671-9
978-94-009-7669-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-7669-6_20

DOI

http://dx.doi.org/10.1007/978-94-009-7669-6_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006520160


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Kloster", 
        "givenName": "G.", 
        "id": "sg:person.01014562017.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014562017.97"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "St\u00f6cklin", 
        "givenName": "G.", 
        "id": "sg:person.01324373457.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324373457.25"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Vyska", 
        "givenName": "K.", 
        "id": "sg:person.076255404.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.076255404.92"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Freundlieb", 
        "givenName": "C.", 
        "type": "Person"
      }, 
      {
        "familyName": "H\u00f6ck", 
        "givenName": "A.", 
        "id": "sg:person.076557045.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.076557045.62"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Feinendegen", 
        "givenName": "L. E.", 
        "id": "sg:person.0101612372.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0101612372.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Traupe", 
        "givenName": "H.", 
        "id": "sg:person.01043662207.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043662207.45"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Heiss", 
        "givenName": "W. D.", 
        "id": "sg:person.014142346732.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142346732.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0006-8993(74)90052-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000951544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(74)90052-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000951544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.20.1.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010561011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-708x(77)90159-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012251623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-708x(77)90159-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012251623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-4159.1977.tb10649.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016554520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410060502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017761252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.44.1.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025521561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jlcr.2580140204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041794420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410080108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043812625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-4159.1968.tb10333.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053506712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.414358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062624348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074489718", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074751889", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplegacy.1975.228.6.1936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074880974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080301344", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplegacy.1973.225.3.586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080453657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplegacy.1970.219.3.774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081088363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082074995", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082257369", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982", 
    "datePublishedReg": "1982-01-01", 
    "description": "The normal brain meets its energy needs solely by oxidative metabolism of D-glucose. Thus, labelled derivatives of D-glucose may be expected to be useful tracers for glucose utilization. Since D-glucose cannot freely enter the brain, but instead uses a carrier-mediated diffusion system (the hexose carrier), strict stereochemical requirements have to be met by D-glucose tracer analogues. The electronegative substituents must be in an all-cis as well as an all-equatorial configuration. Thus, all the analogues investigated so far, have that particular arrangement. Raichle et al. (1,2) studied the distribution of photosynthetically prepared 11C-D-glucose in monkeys. However, the multiple pathways of glucose metabolism present made it very difficult to interpret the data accumulated during the in vivo measurements. Ido et al. (3) synthetized the D-glucose analogue 18F-2-fluoro-2-deoxy-D-glucose (FDG) and the biodistribution was studied in mice by Gallagher et al. (4). FDG was successfully applied to the measurement of regional glucose metabolic rates in man by Reivich et al. (5) and Phelps et al. (6). FDG is transported into the brain via the hexose carrier; once inside the cell it is phosphorylated by hexokinase to yield FDG-6-phosphate which cannot be further utilized for glucolysis. FDG is thus trapped inside the cell. This is an in vivo application of the well-known autoradiographic 14C-2-deoxy-D-glucose method of Sokoloff et al. (7). Using any of these methods (3\u20137), an integral value of regional cerebral glucose utilization is obtained for the time period between administration of the radiopharmaceutical and recording of the data using a positron emission tomograph (PET). Other possible compounds using the same approach are 18F-3-fluoro-3-deoxy-D-glucose (8,9) and 11C-2-deoxy-D-glucose (10).", 
    "editor": [
      {
        "familyName": "Cox", 
        "givenName": "Peter H.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-7669-6_20", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-009-7671-9", 
        "978-94-009-7669-6"
      ], 
      "name": "Progress in Radiopharmacology 3", 
      "type": "Book"
    }, 
    "name": "3-(11C)-Methyl-D-Glucose, an Agent for the Assessment of Regional Glucose Transport Across the Blood-Brain Barrier", 
    "pagination": "199-211", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006520160"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-7669-6_20"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1f0e7b32c874970f8b4f3dfae6be434eacba758c1eeea9a0868f9c176676f09a"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-7669-6_20", 
      "https://app.dimensions.ai/details/publication/pub.1006520160"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106819_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-009-7669-6_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7669-6_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7669-6_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7669-6_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7669-6_20'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-7669-6_20 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N514d591bb7d2473ab609677467fbb747
4 schema:citation https://app.dimensions.ai/details/publication/pub.1074489718
5 https://app.dimensions.ai/details/publication/pub.1074751889
6 https://app.dimensions.ai/details/publication/pub.1080301344
7 https://app.dimensions.ai/details/publication/pub.1082074995
8 https://app.dimensions.ai/details/publication/pub.1082257369
9 https://doi.org/10.1002/ana.410060502
10 https://doi.org/10.1002/ana.410080108
11 https://doi.org/10.1002/jlcr.2580140204
12 https://doi.org/10.1016/0006-8993(74)90052-3
13 https://doi.org/10.1016/0020-708x(77)90159-4
14 https://doi.org/10.1111/j.1471-4159.1968.tb10333.x
15 https://doi.org/10.1111/j.1471-4159.1977.tb10649.x
16 https://doi.org/10.1126/science.414358
17 https://doi.org/10.1152/ajplegacy.1970.219.3.774
18 https://doi.org/10.1152/ajplegacy.1973.225.3.586
19 https://doi.org/10.1152/ajplegacy.1975.228.6.1936
20 https://doi.org/10.1161/01.res.20.1.124
21 https://doi.org/10.1161/01.res.44.1.127
22 schema:datePublished 1982
23 schema:datePublishedReg 1982-01-01
24 schema:description The normal brain meets its energy needs solely by oxidative metabolism of D-glucose. Thus, labelled derivatives of D-glucose may be expected to be useful tracers for glucose utilization. Since D-glucose cannot freely enter the brain, but instead uses a carrier-mediated diffusion system (the hexose carrier), strict stereochemical requirements have to be met by D-glucose tracer analogues. The electronegative substituents must be in an all-cis as well as an all-equatorial configuration. Thus, all the analogues investigated so far, have that particular arrangement. Raichle et al. (1,2) studied the distribution of photosynthetically prepared 11C-D-glucose in monkeys. However, the multiple pathways of glucose metabolism present made it very difficult to interpret the data accumulated during the in vivo measurements. Ido et al. (3) synthetized the D-glucose analogue 18F-2-fluoro-2-deoxy-D-glucose (FDG) and the biodistribution was studied in mice by Gallagher et al. (4). FDG was successfully applied to the measurement of regional glucose metabolic rates in man by Reivich et al. (5) and Phelps et al. (6). FDG is transported into the brain via the hexose carrier; once inside the cell it is phosphorylated by hexokinase to yield FDG-6-phosphate which cannot be further utilized for glucolysis. FDG is thus trapped inside the cell. This is an in vivo application of the well-known autoradiographic 14C-2-deoxy-D-glucose method of Sokoloff et al. (7). Using any of these methods (3–7), an integral value of regional cerebral glucose utilization is obtained for the time period between administration of the radiopharmaceutical and recording of the data using a positron emission tomograph (PET). Other possible compounds using the same approach are 18F-3-fluoro-3-deoxy-D-glucose (8,9) and 11C-2-deoxy-D-glucose (10).
25 schema:editor N63c195546f3546c08858fef5e2a2b6a2
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Need787d1f44e411e881fade79a44760b
30 schema:name 3-(11C)-Methyl-D-Glucose, an Agent for the Assessment of Regional Glucose Transport Across the Blood-Brain Barrier
31 schema:pagination 199-211
32 schema:productId N5cc19fb6f471416b811861beccc1c0c3
33 Na68693df517a4c46bddb9518f8bf9a9f
34 Nd158d2b5ecb94d3e8645e832e5a6ab42
35 schema:publisher Nfc886291d4964a088441f5c364b8a0de
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006520160
37 https://doi.org/10.1007/978-94-009-7669-6_20
38 schema:sdDatePublished 2019-04-16T10:08
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N0ff60b8616ab4099b730948222f27e44
41 schema:url https://link.springer.com/10.1007%2F978-94-009-7669-6_20
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N0ff60b8616ab4099b730948222f27e44 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N1d126841a6464138976b87fe74830a8a rdf:first Nff281d358a364061a5b94945625da02f
48 rdf:rest Nce0d74d55b234c579ed18473cf75e4f2
49 N209ec193fe1f42b08967b94623c52c29 rdf:first sg:person.01324373457.25
50 rdf:rest Nbe16744360504dd385f7556c3dab38d6
51 N514d591bb7d2473ab609677467fbb747 rdf:first sg:person.01014562017.97
52 rdf:rest N209ec193fe1f42b08967b94623c52c29
53 N522f276b57854b198de2b1443ba993e9 schema:familyName Cox
54 schema:givenName Peter H.
55 rdf:type schema:Person
56 N5cc19fb6f471416b811861beccc1c0c3 schema:name doi
57 schema:value 10.1007/978-94-009-7669-6_20
58 rdf:type schema:PropertyValue
59 N63c195546f3546c08858fef5e2a2b6a2 rdf:first N522f276b57854b198de2b1443ba993e9
60 rdf:rest rdf:nil
61 Na68693df517a4c46bddb9518f8bf9a9f schema:name readcube_id
62 schema:value 1f0e7b32c874970f8b4f3dfae6be434eacba758c1eeea9a0868f9c176676f09a
63 rdf:type schema:PropertyValue
64 Nbe16744360504dd385f7556c3dab38d6 rdf:first sg:person.076255404.92
65 rdf:rest N1d126841a6464138976b87fe74830a8a
66 Nce0d74d55b234c579ed18473cf75e4f2 rdf:first sg:person.076557045.62
67 rdf:rest Nce32a49131cc42b3948611cc8957b936
68 Nce32a49131cc42b3948611cc8957b936 rdf:first sg:person.0101612372.31
69 rdf:rest Nd5cd03ca01f14f3d935fa196812f8ade
70 Nd0ba15c2f7774489beaa9c8d9130f44d rdf:first sg:person.014142346732.64
71 rdf:rest rdf:nil
72 Nd158d2b5ecb94d3e8645e832e5a6ab42 schema:name dimensions_id
73 schema:value pub.1006520160
74 rdf:type schema:PropertyValue
75 Nd5cd03ca01f14f3d935fa196812f8ade rdf:first sg:person.01043662207.45
76 rdf:rest Nd0ba15c2f7774489beaa9c8d9130f44d
77 Need787d1f44e411e881fade79a44760b schema:isbn 978-94-009-7669-6
78 978-94-009-7671-9
79 schema:name Progress in Radiopharmacology 3
80 rdf:type schema:Book
81 Nfc886291d4964a088441f5c364b8a0de schema:location Dordrecht
82 schema:name Springer Netherlands
83 rdf:type schema:Organisation
84 Nff281d358a364061a5b94945625da02f schema:familyName Freundlieb
85 schema:givenName C.
86 rdf:type schema:Person
87 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
88 schema:name Medical and Health Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
91 schema:name Clinical Sciences
92 rdf:type schema:DefinedTerm
93 sg:person.01014562017.97 schema:familyName Kloster
94 schema:givenName G.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014562017.97
96 rdf:type schema:Person
97 sg:person.0101612372.31 schema:familyName Feinendegen
98 schema:givenName L. E.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0101612372.31
100 rdf:type schema:Person
101 sg:person.01043662207.45 schema:familyName Traupe
102 schema:givenName H.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043662207.45
104 rdf:type schema:Person
105 sg:person.01324373457.25 schema:familyName Stöcklin
106 schema:givenName G.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324373457.25
108 rdf:type schema:Person
109 sg:person.014142346732.64 schema:familyName Heiss
110 schema:givenName W. D.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142346732.64
112 rdf:type schema:Person
113 sg:person.076255404.92 schema:familyName Vyska
114 schema:givenName K.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.076255404.92
116 rdf:type schema:Person
117 sg:person.076557045.62 schema:familyName Höck
118 schema:givenName A.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.076557045.62
120 rdf:type schema:Person
121 https://app.dimensions.ai/details/publication/pub.1074489718 schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1074751889 schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1080301344 schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1082074995 schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1082257369 schema:CreativeWork
126 https://doi.org/10.1002/ana.410060502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017761252
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/ana.410080108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043812625
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/jlcr.2580140204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041794420
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0006-8993(74)90052-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000951544
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0020-708x(77)90159-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012251623
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1111/j.1471-4159.1968.tb10333.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053506712
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/j.1471-4159.1977.tb10649.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016554520
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1126/science.414358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062624348
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1152/ajplegacy.1970.219.3.774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081088363
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1152/ajplegacy.1973.225.3.586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080453657
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1152/ajplegacy.1975.228.6.1936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074880974
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1161/01.res.20.1.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010561011
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1161/01.res.44.1.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025521561
151 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...