Application of inverse modelling techniques to palaeoclimatic data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

K. Hasselmann , K. Herterich

ABSTRACT

The method of inverse modelling is summarized and illustrated by examples from short-term climate modelling. The application of the technique to palaeoclimatic data is demonstrated by developing a general method for the construction of linear climate response models simulaneously with the time calibration of core records. The approach admits full variability of the time-depth calibration curve under defined integral constraints while determining the optimal linear climate response to astronomical forcing consistent with general dynamical side conditions. More... »

PAGES

52-68

Book

TITLE

Palaeoclimatic Research and Models

ISBN

978-94-009-7238-4
978-94-009-7236-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-7236-0_7

DOI

http://dx.doi.org/10.1007/978-94-009-7236-0_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044702199


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasselmann", 
        "givenName": "K.", 
        "id": "sg:person.011507631147.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herterich", 
        "givenName": "K.", 
        "id": "sg:person.014262515735.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014262515735.94"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "The method of inverse modelling is summarized and illustrated by examples from short-term climate modelling. The application of the technique to palaeoclimatic data is demonstrated by developing a general method for the construction of linear climate response models simulaneously with the time calibration of core records. The approach admits full variability of the time-depth calibration curve under defined integral constraints while determining the optimal linear climate response to astronomical forcing consistent with general dynamical side conditions.", 
    "editor": [
      {
        "familyName": "Ghazi", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-7236-0_7", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-009-7238-4", 
        "978-94-009-7236-0"
      ], 
      "name": "Palaeoclimatic Research and Models", 
      "type": "Book"
    }, 
    "keywords": [
      "palaeoclimatic data", 
      "climate response models", 
      "inverse modelling techniques", 
      "core records", 
      "climate response", 
      "climate modelling", 
      "inverse modelling", 
      "full variability", 
      "time calibration", 
      "modelling techniques", 
      "modelling", 
      "variability", 
      "records", 
      "integral constraints", 
      "calibration", 
      "data", 
      "response model", 
      "constraints", 
      "conditions", 
      "model", 
      "calibration curve", 
      "example", 
      "technique", 
      "response", 
      "construction", 
      "curves", 
      "method", 
      "side conditions", 
      "applications", 
      "general method", 
      "approach"
    ], 
    "name": "Application of inverse modelling techniques to palaeoclimatic data", 
    "pagination": "52-68", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044702199"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-7236-0_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-7236-0_7", 
      "https://app.dimensions.ai/details/publication/pub.1044702199"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_21.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-7236-0_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7236-0_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7236-0_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7236-0_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-7236-0_7'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      22 PREDICATES      56 URIs      49 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-7236-0_7 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Na3507cf952ca499184a7aaccbf175232
4 schema:datePublished 1983
5 schema:datePublishedReg 1983-01-01
6 schema:description The method of inverse modelling is summarized and illustrated by examples from short-term climate modelling. The application of the technique to palaeoclimatic data is demonstrated by developing a general method for the construction of linear climate response models simulaneously with the time calibration of core records. The approach admits full variability of the time-depth calibration curve under defined integral constraints while determining the optimal linear climate response to astronomical forcing consistent with general dynamical side conditions.
7 schema:editor Nd1cac46bff3f4f6c9ede0360a93cf899
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N7944fd611d014ef4b598019412b36ea5
11 schema:keywords applications
12 approach
13 calibration
14 calibration curve
15 climate modelling
16 climate response
17 climate response models
18 conditions
19 constraints
20 construction
21 core records
22 curves
23 data
24 example
25 full variability
26 general method
27 integral constraints
28 inverse modelling
29 inverse modelling techniques
30 method
31 model
32 modelling
33 modelling techniques
34 palaeoclimatic data
35 records
36 response
37 response model
38 side conditions
39 technique
40 time calibration
41 variability
42 schema:name Application of inverse modelling techniques to palaeoclimatic data
43 schema:pagination 52-68
44 schema:productId N8e0644c8762d45d8b6e541d5d5231efb
45 N9ae9a0a7381246659d6b84e2d35ede5f
46 schema:publisher Ne171fea180674795a9bf2e6640ab361d
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044702199
48 https://doi.org/10.1007/978-94-009-7236-0_7
49 schema:sdDatePublished 2022-12-01T06:48
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N97f92328fe5640ac97706d437aeb227e
52 schema:url https://doi.org/10.1007/978-94-009-7236-0_7
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N7944fd611d014ef4b598019412b36ea5 schema:isbn 978-94-009-7236-0
57 978-94-009-7238-4
58 schema:name Palaeoclimatic Research and Models
59 rdf:type schema:Book
60 N8e0644c8762d45d8b6e541d5d5231efb schema:name dimensions_id
61 schema:value pub.1044702199
62 rdf:type schema:PropertyValue
63 N97f92328fe5640ac97706d437aeb227e schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N9ae9a0a7381246659d6b84e2d35ede5f schema:name doi
66 schema:value 10.1007/978-94-009-7236-0_7
67 rdf:type schema:PropertyValue
68 N9df4626502ad4eb28aa613b81f57fd8a schema:familyName Ghazi
69 schema:givenName A.
70 rdf:type schema:Person
71 Na3507cf952ca499184a7aaccbf175232 rdf:first sg:person.011507631147.31
72 rdf:rest Naa96f069b2534235a74f0b974378b3d1
73 Naa96f069b2534235a74f0b974378b3d1 rdf:first sg:person.014262515735.94
74 rdf:rest rdf:nil
75 Nd1cac46bff3f4f6c9ede0360a93cf899 rdf:first N9df4626502ad4eb28aa613b81f57fd8a
76 rdf:rest rdf:nil
77 Ne171fea180674795a9bf2e6640ab361d schema:name Springer Nature
78 rdf:type schema:Organisation
79 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
80 schema:name Earth Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Geography and Environmental Geoscience
84 rdf:type schema:DefinedTerm
85 sg:person.011507631147.31 schema:affiliation grid-institutes:grid.450268.d
86 schema:familyName Hasselmann
87 schema:givenName K.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31
89 rdf:type schema:Person
90 sg:person.014262515735.94 schema:affiliation grid-institutes:grid.450268.d
91 schema:familyName Herterich
92 schema:givenName K.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014262515735.94
94 rdf:type schema:Person
95 grid-institutes:grid.450268.d schema:alternateName Max-Planck-Institut für Meteorologie, Hamburg, Germany
96 schema:name Max-Planck-Institut für Meteorologie, Hamburg, Germany
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...