Resistant Line Fitting in Actuarial Science View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

P. Rousseeuw , A. Leroy , B. Daniels

ABSTRACT

An example on employers’ liability insurance shows that the ordinary least squares method for fitting a straight line to data is very sensitive to outliers. As an alternative, the least trimmed squares (LTS) technique is discussed, which can resist the effect of a large fraction of contaminated data. The LTS is compared to other proposals, using both theoretical arguments and a numerical experiment. A complete portable FORTRAN program is given to enable the reader to apply the new method himself. More... »

PAGES

315-332

References to SciGraph publications

Book

TITLE

Premium Calculation in Insurance

ISBN

978-94-009-6356-6
978-94-009-6354-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-6354-2_17

DOI

http://dx.doi.org/10.1007/978-94-009-6354-2_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019487432


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vrije Universiteit Brussel", 
          "id": "https://www.grid.ac/institutes/grid.8767.e", 
          "name": [
            "Dept. of Math., F 715, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium", 
            "CSOO, M203, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "P.", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vrije Universiteit Brussel", 
          "id": "https://www.grid.ac/institutes/grid.8767.e", 
          "name": [
            "Dept. of Math., F 715, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium", 
            "CSOO, M203, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leroy", 
        "givenName": "A.", 
        "id": "sg:person.010626615714.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010626615714.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vrije Universiteit Brussel", 
          "id": "https://www.grid.ac/institutes/grid.8767.e", 
          "name": [
            "Dept. of Math., F 715, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium", 
            "CSOO, M203, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daniels", 
        "givenName": "B.", 
        "id": "sg:person.015736726114.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736726114.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0098492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034874854", 
          "https://doi.org/10.1007/bfb0098492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6687(84)90020-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046494629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/69.1.242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177692377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064398199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177693054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064398394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176342503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640342"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "An example on employers\u2019 liability insurance shows that the ordinary least squares method for fitting a straight line to data is very sensitive to outliers. As an alternative, the least trimmed squares (LTS) technique is discussed, which can resist the effect of a large fraction of contaminated data. The LTS is compared to other proposals, using both theoretical arguments and a numerical experiment. A complete portable FORTRAN program is given to enable the reader to apply the new method himself.", 
    "editor": [
      {
        "familyName": "Vylder", 
        "givenName": "F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Goovaerts", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Haezendonck", 
        "givenName": "J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-6354-2_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-009-6356-6", 
        "978-94-009-6354-2"
      ], 
      "name": "Premium Calculation in Insurance", 
      "type": "Book"
    }, 
    "name": "Resistant Line Fitting in Actuarial Science", 
    "pagination": "315-332", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019487432"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-6354-2_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5cd9f0a4ca597fc5e716b4a2e4e048372cd2e49d1c27536f9df90825bed3efa6"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-6354-2_17", 
      "https://app.dimensions.ai/details/publication/pub.1019487432"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91466_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-009-6354-2_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-6354-2_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-6354-2_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-6354-2_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-6354-2_17'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-6354-2_17 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N35698f48ba6746439634fbe501be3ea8
4 schema:citation sg:pub.10.1007/bfb0098492
5 https://doi.org/10.1016/0167-6687(84)90020-9
6 https://doi.org/10.1093/biomet/69.1.242
7 https://doi.org/10.1214/aoms/1177692377
8 https://doi.org/10.1214/aoms/1177693054
9 https://doi.org/10.1214/aos/1176342503
10 https://doi.org/10.2307/1912810
11 schema:datePublished 1984
12 schema:datePublishedReg 1984-01-01
13 schema:description An example on employers’ liability insurance shows that the ordinary least squares method for fitting a straight line to data is very sensitive to outliers. As an alternative, the least trimmed squares (LTS) technique is discussed, which can resist the effect of a large fraction of contaminated data. The LTS is compared to other proposals, using both theoretical arguments and a numerical experiment. A complete portable FORTRAN program is given to enable the reader to apply the new method himself.
14 schema:editor N1264b92963d24e6680ce62e3f758c438
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N1780b1d70025412b99225b40fcb94c04
19 schema:name Resistant Line Fitting in Actuarial Science
20 schema:pagination 315-332
21 schema:productId N737f6124a1894e568d99fc4c8bc9f199
22 Naf939d7d613942ae9df37a207ab2b405
23 Nbbd950751aa14bbd90af47ca78866ad6
24 schema:publisher N27cf445eba4d4d52b9619fe3cfaa8f54
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019487432
26 https://doi.org/10.1007/978-94-009-6354-2_17
27 schema:sdDatePublished 2019-04-16T09:46
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N08f7f6b9b48e47b5978ae30a2d7284d2
30 schema:url https://link.springer.com/10.1007%2F978-94-009-6354-2_17
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N08f7f6b9b48e47b5978ae30a2d7284d2 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N0afa809f73974201a31746ea42236e20 rdf:first N1ff10f23a1d14da59238d6c390465716
37 rdf:rest rdf:nil
38 N1264b92963d24e6680ce62e3f758c438 rdf:first Ndac387d388154285b0d35dc53c1b6e96
39 rdf:rest N147611f0740e46e2bda56aff44626cf8
40 N147611f0740e46e2bda56aff44626cf8 rdf:first N4c83b8593c0b4a82beb2f5fee076f100
41 rdf:rest N0afa809f73974201a31746ea42236e20
42 N1780b1d70025412b99225b40fcb94c04 schema:isbn 978-94-009-6354-2
43 978-94-009-6356-6
44 schema:name Premium Calculation in Insurance
45 rdf:type schema:Book
46 N1ff10f23a1d14da59238d6c390465716 schema:familyName Haezendonck
47 schema:givenName J.
48 rdf:type schema:Person
49 N27cf445eba4d4d52b9619fe3cfaa8f54 schema:location Dordrecht
50 schema:name Springer Netherlands
51 rdf:type schema:Organisation
52 N35698f48ba6746439634fbe501be3ea8 rdf:first sg:person.0775337371.63
53 rdf:rest N7b521917581b4f18a23445acb9725f40
54 N4a6502d4b3fe45bfb5cca04e803891c5 rdf:first sg:person.015736726114.71
55 rdf:rest rdf:nil
56 N4c83b8593c0b4a82beb2f5fee076f100 schema:familyName Goovaerts
57 schema:givenName M.
58 rdf:type schema:Person
59 N737f6124a1894e568d99fc4c8bc9f199 schema:name dimensions_id
60 schema:value pub.1019487432
61 rdf:type schema:PropertyValue
62 N7b521917581b4f18a23445acb9725f40 rdf:first sg:person.010626615714.58
63 rdf:rest N4a6502d4b3fe45bfb5cca04e803891c5
64 Naf939d7d613942ae9df37a207ab2b405 schema:name doi
65 schema:value 10.1007/978-94-009-6354-2_17
66 rdf:type schema:PropertyValue
67 Nbbd950751aa14bbd90af47ca78866ad6 schema:name readcube_id
68 schema:value 5cd9f0a4ca597fc5e716b4a2e4e048372cd2e49d1c27536f9df90825bed3efa6
69 rdf:type schema:PropertyValue
70 Ndac387d388154285b0d35dc53c1b6e96 schema:familyName Vylder
71 schema:givenName F.
72 rdf:type schema:Person
73 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
74 schema:name Economics
75 rdf:type schema:DefinedTerm
76 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
77 schema:name Applied Economics
78 rdf:type schema:DefinedTerm
79 sg:person.010626615714.58 schema:affiliation https://www.grid.ac/institutes/grid.8767.e
80 schema:familyName Leroy
81 schema:givenName A.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010626615714.58
83 rdf:type schema:Person
84 sg:person.015736726114.71 schema:affiliation https://www.grid.ac/institutes/grid.8767.e
85 schema:familyName Daniels
86 schema:givenName B.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736726114.71
88 rdf:type schema:Person
89 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.8767.e
90 schema:familyName Rousseeuw
91 schema:givenName P.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
93 rdf:type schema:Person
94 sg:pub.10.1007/bfb0098492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034874854
95 https://doi.org/10.1007/bfb0098492
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0167-6687(84)90020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046494629
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1093/biomet/69.1.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419157
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1214/aoms/1177692377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398199
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1214/aoms/1177693054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398394
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1214/aos/1176342503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406843
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2307/1912810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640342
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.8767.e schema:alternateName Vrije Universiteit Brussel
110 schema:name CSOO, M203, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
111 Dept. of Math., F 715, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...