Climate Modelling Activities at the Max-Planck-Institute of Meteorology, Hamburg View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1986

AUTHORS

K. Hasselmann

ABSTRACT

The hierarchy of climate models in development at the Max-Planck-Institute of Meteorology extends from low order empirical linear prediction and stochastic models to high resolution models of the coupled ocean-ice-atmosphere-biosphere system. Simple stochastic models are able to explain many of the qualitative features of natural climate variability and can be applied in the inverse modelling mode to quantify important interaction processes within the climatic system. The statistical analysis techniques developed for inverse modelling and empirical model construction are useful also for analysing numerical climate response experiments with atmospheric general circulation models. The main emphasis in the development of high resolution models has been placed on the global ocean circulation. The tropical oceanic response to observed atmospheric wind forcing could be well simulated over a 25 year period with a high resolution primitive equation equatorial ocean model. A large scale, quasi-geostrophic global ocean circulation model has been used for the computation of the heat transport and storage in the oceans and the development of a global carbon cycle model incorporating a more realistic treatment of the storage, transport and biochemical conversions of carbon in the ocean. Models of sea ice and ice sheet dynamics are also in development and will be coupled in future experiments with high resolution atmospheric and ocean circulation models. More... »

PAGES

172-194

Book

TITLE

Current Issues in Climate Research

ISBN

978-94-010-8925-8
978-94-009-5494-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-5494-6_17

DOI

http://dx.doi.org/10.1007/978-94-009-5494-6_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050892332


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasselmann", 
        "givenName": "K.", 
        "id": "sg:person.011507631147.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1986", 
    "datePublishedReg": "1986-01-01", 
    "description": "The hierarchy of climate models in development at the Max-Planck-Institute of Meteorology extends from low order empirical linear prediction and stochastic models to high resolution models of the coupled ocean-ice-atmosphere-biosphere system. Simple stochastic models are able to explain many of the qualitative features of natural climate variability and can be applied in the inverse modelling mode to quantify important interaction processes within the climatic system. The statistical analysis techniques developed for inverse modelling and empirical model construction are useful also for analysing numerical climate response experiments with atmospheric general circulation models. The main emphasis in the development of high resolution models has been placed on the global ocean circulation. The tropical oceanic response to observed atmospheric wind forcing could be well simulated over a 25 year period with a high resolution primitive equation equatorial ocean model. A large scale, quasi-geostrophic global ocean circulation model has been used for the computation of the heat transport and storage in the oceans and the development of a global carbon cycle model incorporating a more realistic treatment of the storage, transport and biochemical conversions of carbon in the ocean. Models of sea ice and ice sheet dynamics are also in development and will be coupled in future experiments with high resolution atmospheric and ocean circulation models.", 
    "editor": [
      {
        "familyName": "Ghazi", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Fantechi", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-5494-6_17", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-8925-8", 
        "978-94-009-5494-6"
      ], 
      "name": "Current Issues in Climate Research", 
      "type": "Book"
    }, 
    "keywords": [
      "ocean circulation model", 
      "high-resolution model", 
      "Institute of Meteorology", 
      "circulation model", 
      "resolution model", 
      "atmospheric general circulation model", 
      "global ocean circulation model", 
      "global carbon cycle models", 
      "equatorial ocean model", 
      "natural climate variability", 
      "global ocean circulation", 
      "ice sheet dynamics", 
      "atmosphere-biosphere system", 
      "general circulation model", 
      "carbon cycle models", 
      "high-resolution atmospheric", 
      "stochastic model", 
      "ocean circulation", 
      "oceanic response", 
      "ocean model", 
      "climate models", 
      "climate variability", 
      "climatic system", 
      "sea ice", 
      "sheet dynamics", 
      "Max-Planck", 
      "atmospheric winds", 
      "simple stochastic model", 
      "inverse modelling", 
      "important interaction processes", 
      "heat transport", 
      "statistical analysis techniques", 
      "response experiments", 
      "Ocean", 
      "cycle model", 
      "meteorology", 
      "interaction process", 
      "realistic treatment", 
      "linear prediction", 
      "qualitative features", 
      "modelling activities", 
      "year period", 
      "model construction", 
      "transport", 
      "large scale", 
      "ice", 
      "atmospheric", 
      "wind", 
      "main emphasis", 
      "circulation", 
      "variability", 
      "analysis techniques", 
      "model", 
      "future experiments", 
      "carbon", 
      "inverse", 
      "computation", 
      "modelling", 
      "dynamics", 
      "scale", 
      "storage", 
      "Hamburg", 
      "period", 
      "system", 
      "prediction", 
      "experiments", 
      "features", 
      "hierarchy", 
      "process", 
      "construction", 
      "technique", 
      "Institute", 
      "development", 
      "mode", 
      "emphasis", 
      "activity", 
      "response", 
      "conversion", 
      "biochemical conversion", 
      "treatment"
    ], 
    "name": "Climate Modelling Activities at the Max-Planck-Institute of Meteorology, Hamburg", 
    "pagination": "172-194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050892332"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-5494-6_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-5494-6_17", 
      "https://app.dimensions.ai/details/publication/pub.1050892332"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_408.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-5494-6_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5494-6_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5494-6_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5494-6_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5494-6_17'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      106 URIs      98 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-5494-6_17 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author N2c35e6ccf00e4a4597f50c5c086a5a36
5 schema:datePublished 1986
6 schema:datePublishedReg 1986-01-01
7 schema:description The hierarchy of climate models in development at the Max-Planck-Institute of Meteorology extends from low order empirical linear prediction and stochastic models to high resolution models of the coupled ocean-ice-atmosphere-biosphere system. Simple stochastic models are able to explain many of the qualitative features of natural climate variability and can be applied in the inverse modelling mode to quantify important interaction processes within the climatic system. The statistical analysis techniques developed for inverse modelling and empirical model construction are useful also for analysing numerical climate response experiments with atmospheric general circulation models. The main emphasis in the development of high resolution models has been placed on the global ocean circulation. The tropical oceanic response to observed atmospheric wind forcing could be well simulated over a 25 year period with a high resolution primitive equation equatorial ocean model. A large scale, quasi-geostrophic global ocean circulation model has been used for the computation of the heat transport and storage in the oceans and the development of a global carbon cycle model incorporating a more realistic treatment of the storage, transport and biochemical conversions of carbon in the ocean. Models of sea ice and ice sheet dynamics are also in development and will be coupled in future experiments with high resolution atmospheric and ocean circulation models.
8 schema:editor N7e41147d5eb44aec9e7e44916f5ea8df
9 schema:genre chapter
10 schema:isAccessibleForFree false
11 schema:isPartOf N72708445a6c943f2ada59a0a8206badc
12 schema:keywords Hamburg
13 Institute
14 Institute of Meteorology
15 Max-Planck
16 Ocean
17 activity
18 analysis techniques
19 atmosphere-biosphere system
20 atmospheric
21 atmospheric general circulation model
22 atmospheric winds
23 biochemical conversion
24 carbon
25 carbon cycle models
26 circulation
27 circulation model
28 climate models
29 climate variability
30 climatic system
31 computation
32 construction
33 conversion
34 cycle model
35 development
36 dynamics
37 emphasis
38 equatorial ocean model
39 experiments
40 features
41 future experiments
42 general circulation model
43 global carbon cycle models
44 global ocean circulation
45 global ocean circulation model
46 heat transport
47 hierarchy
48 high-resolution atmospheric
49 high-resolution model
50 ice
51 ice sheet dynamics
52 important interaction processes
53 interaction process
54 inverse
55 inverse modelling
56 large scale
57 linear prediction
58 main emphasis
59 meteorology
60 mode
61 model
62 model construction
63 modelling
64 modelling activities
65 natural climate variability
66 ocean circulation
67 ocean circulation model
68 ocean model
69 oceanic response
70 period
71 prediction
72 process
73 qualitative features
74 realistic treatment
75 resolution model
76 response
77 response experiments
78 scale
79 sea ice
80 sheet dynamics
81 simple stochastic model
82 statistical analysis techniques
83 stochastic model
84 storage
85 system
86 technique
87 transport
88 treatment
89 variability
90 wind
91 year period
92 schema:name Climate Modelling Activities at the Max-Planck-Institute of Meteorology, Hamburg
93 schema:pagination 172-194
94 schema:productId N1c340e45501d48ad8ea5d282a9dc66da
95 Ne24948f4525841feaf52ff5ce63e6d5c
96 schema:publisher Nff911688c0f344ffac21c707085bf94a
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050892332
98 https://doi.org/10.1007/978-94-009-5494-6_17
99 schema:sdDatePublished 2022-12-01T06:53
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N20098121ae224c979df8f9c32f429688
102 schema:url https://doi.org/10.1007/978-94-009-5494-6_17
103 sgo:license sg:explorer/license/
104 sgo:sdDataset chapters
105 rdf:type schema:Chapter
106 N1c340e45501d48ad8ea5d282a9dc66da schema:name dimensions_id
107 schema:value pub.1050892332
108 rdf:type schema:PropertyValue
109 N20098121ae224c979df8f9c32f429688 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N2c35e6ccf00e4a4597f50c5c086a5a36 rdf:first sg:person.011507631147.31
112 rdf:rest rdf:nil
113 N71d031341ff047ee99c42d4349c1017d schema:familyName Ghazi
114 schema:givenName A.
115 rdf:type schema:Person
116 N72708445a6c943f2ada59a0a8206badc schema:isbn 978-94-009-5494-6
117 978-94-010-8925-8
118 schema:name Current Issues in Climate Research
119 rdf:type schema:Book
120 N7e41147d5eb44aec9e7e44916f5ea8df rdf:first N71d031341ff047ee99c42d4349c1017d
121 rdf:rest Nb7a840264c5348fc970ad9280b4155d5
122 N80f7f4ed9b394caba6871ccf225255c1 schema:familyName Fantechi
123 schema:givenName R.
124 rdf:type schema:Person
125 Nb7a840264c5348fc970ad9280b4155d5 rdf:first N80f7f4ed9b394caba6871ccf225255c1
126 rdf:rest rdf:nil
127 Ne24948f4525841feaf52ff5ce63e6d5c schema:name doi
128 schema:value 10.1007/978-94-009-5494-6_17
129 rdf:type schema:PropertyValue
130 Nff911688c0f344ffac21c707085bf94a schema:name Springer Nature
131 rdf:type schema:Organisation
132 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
133 schema:name Earth Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
136 schema:name Atmospheric Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
139 schema:name Oceanography
140 rdf:type schema:DefinedTerm
141 sg:person.011507631147.31 schema:affiliation grid-institutes:grid.450268.d
142 schema:familyName Hasselmann
143 schema:givenName K.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31
145 rdf:type schema:Person
146 grid-institutes:grid.450268.d schema:alternateName Max-Planck-Institut für Meteorologie, Hamburg, Germany
147 schema:name Max-Planck-Institut für Meteorologie, Hamburg, Germany
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...